SKKT 323; SKKH 323

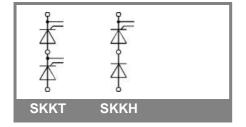
SEMIPACK[®] 3

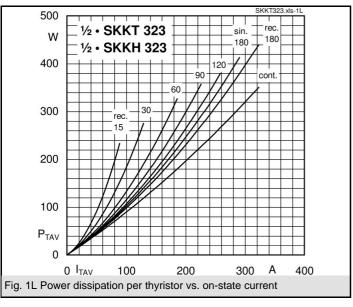
Thyristor / Diode Modules

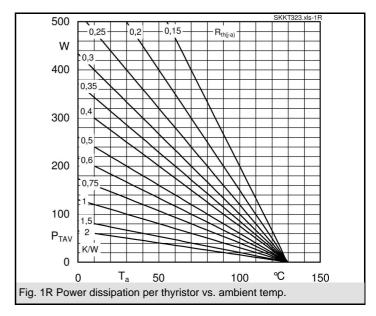
SKKT 323 SKKH 323

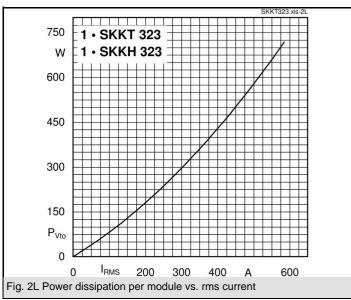
Preliminary Data

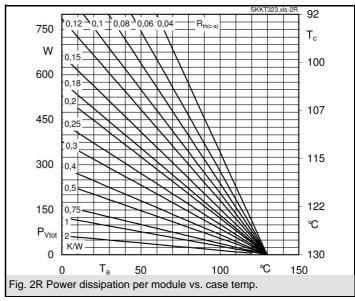
Features

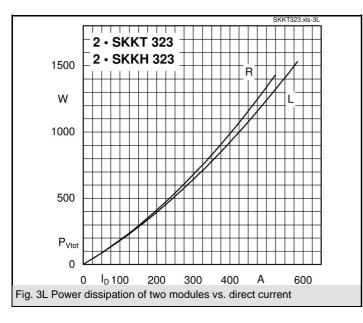

- Industrial standard package
- Electrically insulated base plate
- Heat transfer through aluminium oxide ceramic insulated metal base plate
- Chip soldered on direct copper bonded Al₂O₃ ceramic
- Thyristor chip with center gate
- UL recognition applied for file no. E63532

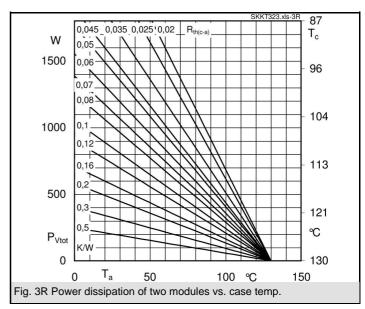

Typical Applications*

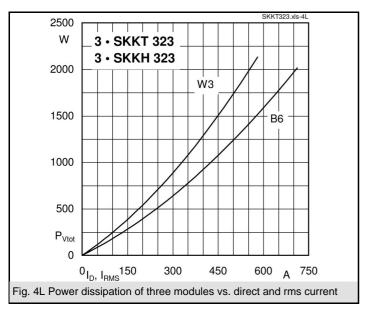

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

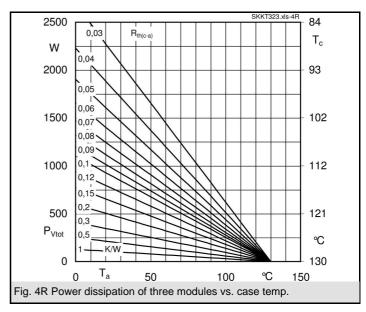

V_{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 520 A (maximum value for continuous operation)		
V	V	I _{TAV} = 323 A (sin. 180; T _c = 84 °C)		
1300	1200	SKKT 323/12E	SKKH 323/12E	
1700	1600	SKKT 323/16E	SKKH 323/16E	

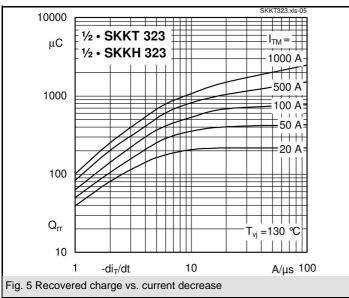

Symbol	Conditions	Values	Units
I_{TAV}	sin. 180; T _c = 85 (100) °C;	320 (241)	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	9500	Α
	T _{vi} = 130 °C; 10 ms	8200	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	450000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	336000	A²s
V _T	T _{vj} = 25 °C; I _T = 750 A	max. 1,45	V
$V_{T(TO)}$	T _{vj} = 130 °C	max. 0,81	V
r _T	$T_{vj} = 130 ^{\circ}\text{C}$	max. 0,85	mΩ
I_{DD} ; I_{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} , V_{DD} = V_{DRM}	max. 100	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_G = 1 \text{A}; di_G/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 130 °C	max. 130	A/µs
(dv/dt) _{cr}	$T_{vj} = 130 ^{\circ}\text{C}$	max. 1000	V/µs
t_q	$T_{vj} = 130 ^{\circ}\text{C}$,typ.	150	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 2000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 2	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,091 / 0,0455	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,095 / 0,0475	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,11 / 0,055	K/W
R _{th(c-s)}	per thyristor / per module	0,08 / 0,04	K/W
T _{vi}		- 40 + 130	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M_s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminals	9 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	410	g
Case	SKKT	A 43a	
	SKKH	A 56a	

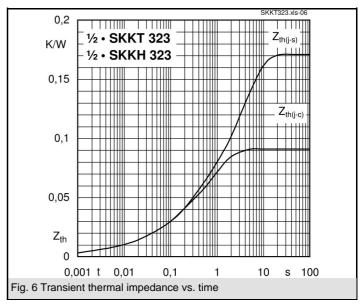


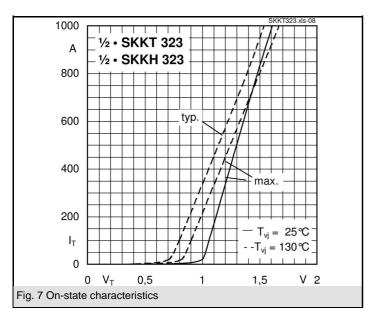


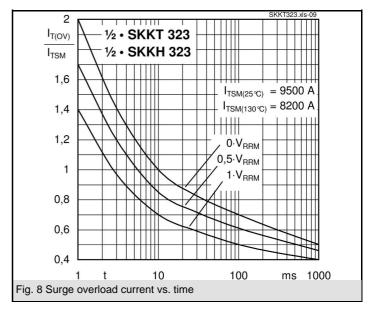


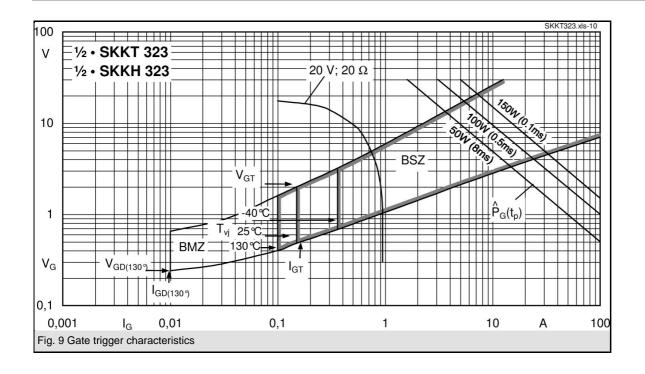


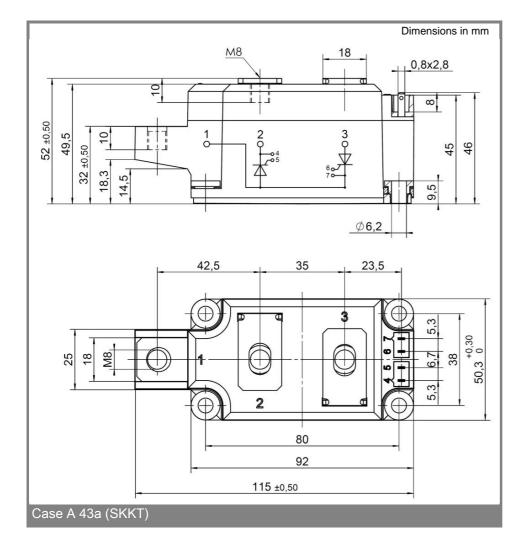


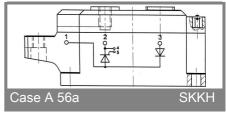



SKKT 323; SKKH 323









^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We

SKKT 323; SKKH 323

therefore strongly recommend prior consultation of our personal.

5 26-07-2007 GIL © by SEMIKRON