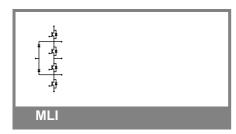


IGBT Module

SK50MLI066

Target Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technologyCAL technology FWD

Typical Applications*

- 3 Level Inverter
- UPS

Remarks

- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode

Absolute Maximum Ratings				25 °C, unless otherwise	e specified
Symbol	Conditions			Values	Units
IGBT					
V_{CES}	T _j = 25 °C T _j = 175 °C			600	V
I _C	T _j = 175 °C	T _s = 25 °C		60	А
		$T_s = 70 ^{\circ}C$		50	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			100	Α
V_{GES}				± 20	V
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 150 °C		6	μs
Inverse	Diode				
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		56	Α
		T _s = 70 °C		44	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			100	Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		320	Α
Freewhe	eling Diode				
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		56	Α
		$T_s = 70 ^{\circ}C$		44	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			60	Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		320	А
Module					
$I_{t(RMS)}$					Α
T _{vj}				-40 + 175	°C
T _{stg}				-40 + 125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						_
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0026	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA
V_{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ
		$T_{j} = 150^{\circ}C$		17		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			1,45		V
		$T_j = 150^{\circ}C_{chiplev}$		1,65		V
C _{ies}				3,1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,2		nF
C _{res}				0,093		nF
t _{d(on)}				30		ns
t _r	R_{Gon} = 16 Ω	V _{CC} = 300V		31		ns
E _{on}	D 40.0	I _C = 50A		1,46		mJ
t _{d(off)}	R_{Goff} = 16 Ω	$T_j = 150 ^{\circ}C$		351		ns
t _f		V _{GE} = -7/+15 V		45		ns
E _{off}				2,02		mJ
$R_{th(j-s)}$	per IGBT			1,11		K/W

IGBT Module

SK50MLI066

Target Data

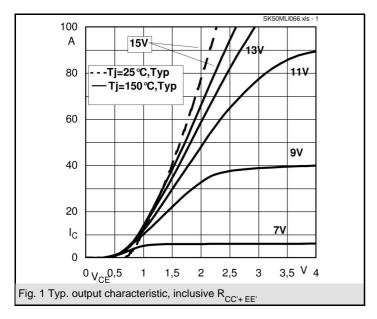
Features

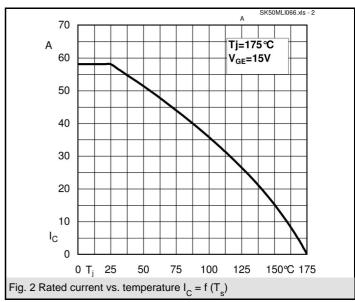
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD

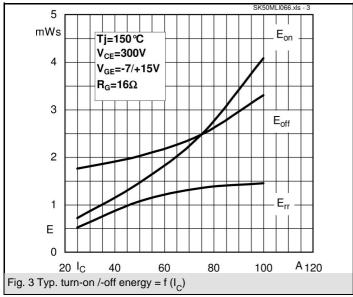
Typical Applications*

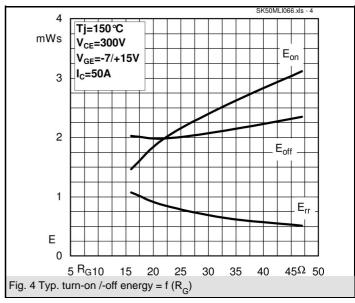
- 3 Level Inverter
- UPS

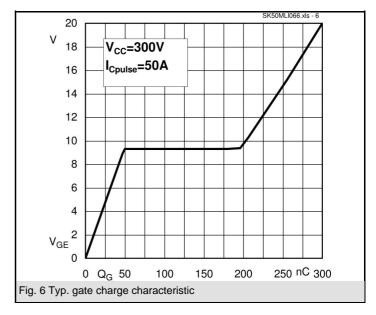
Remarks

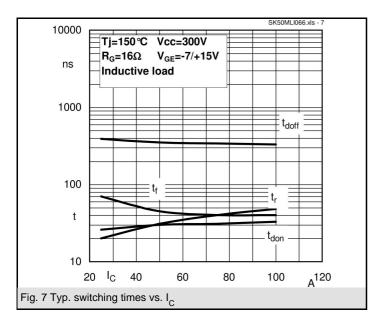

- Visol = 3000V AC, 1s, 50Hz
- Dynamic measure: DUT= IGBT (Gate pin 1) and Neutral Clamp Diode (Kathode pin 16) as free-wheeling diode

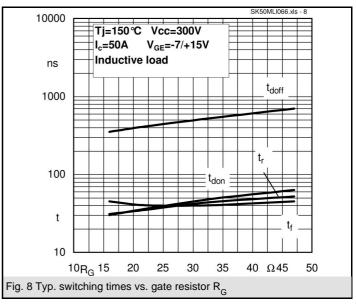

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode (Antiparallel Diode)								
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,5		V		
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,5		V		
V_{F0}		T _j = 25 °C		1		V		
		T _j = 150 °C		0,9		V		
r _F		T _j = 25 °C		10		mΩ		
		T _j = 150 °C T _j = 150 °C		12		mΩ		
I _{RRM}	I _F = 50 A	T _j = 150 °C				Α		
Q_{rr}						μC		
E _{rr}	V _R = 300V			1,07		mJ		
$R_{th(j-s)D}$	per diode			1,7		K/W		
Freewhee	ling Diode (Neutral (
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V			1,5		V		
		T_j = 150 °C _{chiplev} .		1,5		V		
V_{F0}		T _j = 25 °C		1		V		
		T _j = 150 °C		0,9		V		
r _F		T _j = 25 °C		10		V		
		T _j = 150 °C T _i = 150 °C		12		V		
I _{RRM}	I _F = 50 A	T _j = 150 °C		40		Α		
Q_{rr}	di/dt = -2670 A/μs			2,2		μC		
E _{rr}	V _R =300V			1,07		mJ		
$R_{th(j-s)FD}$	per diode			1,7		K/W		
M_s	to heat sink		2,25		2,5	Nm		
w				30		g		

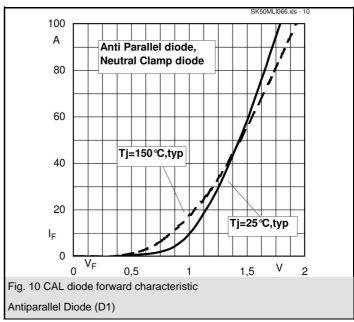

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

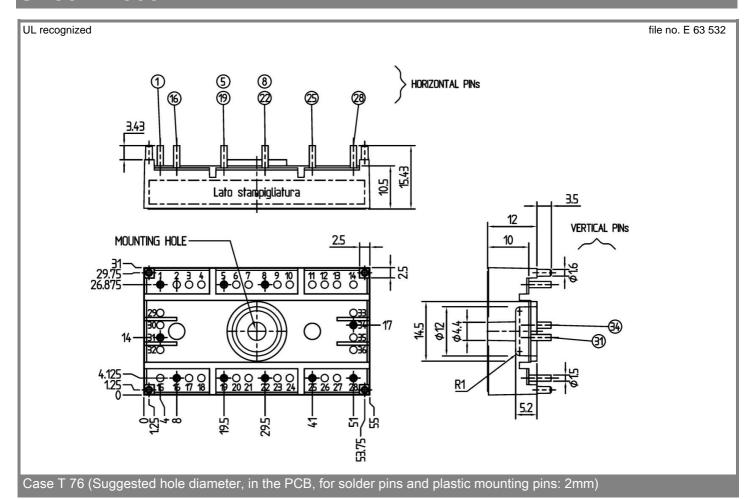

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

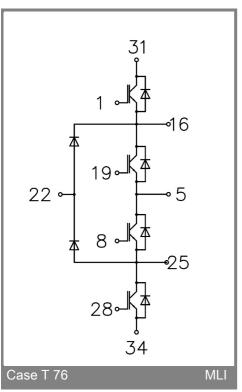












4 26-02-2009 DIL © by SEMIKRON

