Государственный комитет Украины по строительству и архитектуре

Донбасский государственный научно-исследовательский и проектно-технологический институт строительного производства (ДГНИПТИСП)

Рекомендации

по проектированию и методике расчета наружных стен зданий с применением лицевого бетонного кирпича ЧМП "Фагот" г. Красный Луч, Луганской области

Директор ДГНИПТИСП, канд. техн. наук

Н.П. Куркин

Зав. лабораторией технического диагностирования и восстановления объектов

Зав. сектором

В.А. Щерба

С.Н. Пивоварцев

г. Луганск, 2003 г.

Содержание

	Стр
1. Общие положения.	3
2. Основные параметры и размеры лицевого бетонного кирпича.	3
3. Правила проектирования наружных стен зданий с применением лицевого бетонного кирпича.	3
4. Правила расчета стен с облицовками.	7
5. Технология облицовочных работ, требования к отделке.	12
Приложения:	
2. Пример расчета кирпичной стены, облицованной лицевым бетонным кирпичом ЧИП "Фагот".	13

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Рекомендации содержат указания по применению лицевого бетонного кирпича, выпускаемого ЧМП "Фагот" г. Красный Луч, для наружных стен зданий.
- 1.2. Рекомендации предназначены для использования при проектировании наружных стен из кирпича и других штучных материалов.
 - 1.3. Настоящие рекомендации содержат:
- 1.3.1. Правила проектирования и методы отделки наружных стен зданий при их возведении и по готовым стенам с применением лицевого бетонного кирпича:
 - о основные методы крепления облицовочного слоя по готовым стенам;
 - о конструктивные решения перевязок лицевого бетонного кирпича с кладками из штучных материалов при одновременном возведении стен;
 - о основные требования к армированию кладок и устройству разгрузочных элементов для стен с облицовочным слоем из кирпича;
 - 1.3.2. Правила расчета стен с применением лицевого бетонного кирпича:
 - о расчет анкеров крепления лицевого слоя по готовым стенам;
 - о методика расчета определения расчетных перепадов температур в многослойных стенах для подбора анкеров крепления лицевого слоя.
- 1.3.3. Основные технологические правила ведения облицовочных работ с применением лицевого бетонного кирпича:
 - требования к отделке;
 - методы подготовки поверхности готовой кладки стен перед ведением облицовочных работ.
- 1.3.4. Пример расчета анкеров крепления лицевого бетонного кирпича к основной готовой кладке стен.
- 1.4. Выбор конструктивного решения проектируемой стены с облицовкой и способы ее крепления производится с учетом действующих нормативных документов и указаний, приведенных в настоящих Рекомендациях.
- 1.5. Проектирование наружных стен осуществлять в соответствии со СНиП II-3-79* "Строительная теплотехника" с учетом приказа Минстройархитектуры Украины от 27.12.1993 г. № 247, СНиП II-22-81 "Каменные и армокаменные конструкции".
- 1.6. Выполнение работ по организации, имеющих лицензию на производство строительно-монтажных работ, с разработкой проекта производства работ или технологической карты силами подрядных или специализированных организаций.

2. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ ЛИЦЕВОГО БЕТОННОГО КИРПИЧА

Лицевой бетонный кирпич, выпускаемый ЧМП "Фагот", отвечает требованиям ДСТУ Б.В.2.7-7-94 "Изделия бетонные стеновые мелкоштучные", тип кирпича СКО-Л-200/2200/50. По согласованию с базовой организацией по стандартизации утверждены дополнительные к ДСТУ Б.В. 2.7-7-94 формы и размеры лицевого кирпича.

3. ПРАВИЛА ПРОЕКТИРОВАНИЯ НАРУЖНЫХ СТЕН ЗДАНИЙ С ПРИМЕНЕНИЕМ ЛИЦЕВОГО БЕТОННОГО КИРПИЧА

3.1. При проектировании стен зданий необходимо руководствоваться следующими правилами:

• облицовка должна отвечать архитектурным требованиям, создавать достаточное разнообразие и выразительность фасадов зданий;

• при выбранном стиле облицовки и способе ее крепления к стене должна обеспечиваться необходимая надежность ее совместной работы с материалом стены в период эксплуатации здания.

3.2. Крепление лицевого кирпича к стене может производиться:

- при помощи связи облицовочного слоя с материалом стены специальными прокладными рядами облицовки, заходящими в стену (тычковые ряды);
- на слое раствора и анкерах;
- на слое раствора.
- 3.3. Материал основной кладки стены должен быть, как правило, на одну ступень ниже марки облицовочного кирпича.
- 3.4. При выполнении стен из штучных материалов (кирпича, керамических, бетонных или природных камней и мелких блоков) облицовка лицевым кирпичом может быть выполнена при возведении стен или по готовой стене.
- 3.5. При облицовке стен лицевым кирпичом, выполняемых из штучных материалов, **перевязка лицевой и основной кладки** стены осуществляется по многорядной системе.

Тычковые ряды, перевязывающие облицовку с кладкой из кирпича толщиной 65 мм и керамических камней толщиной 88 мм тычковые ряды лицевого кирпича располагаются через четыре ряда (рис. 1).

- 3.6. Рекомендуется, как правила, производить перевязку лицевой и основной кладки сплошными тычковыми рядами. В случае перевязки облицовочного слоя с кладкой стены разреженными тычковыми рядами число тычковых кирпичей должно быть не меньше, чем при сплошных тычковых рядах. По фасаду облицовка может укладываться с перевязкой и без перевязки вертикальных швов. В последнем случае отсутствие перевязки вертикальных швов в лицевом слое должно учитываться в расчете специальным коэффициентом (см. п. 4.7. Рекомендаций).
- 3.7. При возведении **многоэтажных зданий в условиях отрицательных температур в стены**, облицованные лицевым кирпичом с **жестким** соединением облицовки и кладки, в которых расчетная несущая способность используется более чем на 50%, должна укладываться конструктивная арматура. Сварные сетки из стержней диаметром 4 ... 5 мм с ячейкой 100 х 100 мм укладываются в швы кладки по всей толщине стены в третях высоты простенка, но не реже чем через 1 м.
- 3.8. При проектировании наружных стен с облицовкой лицевым кирпичом на **гибких связях** является обязательным опирание лицевого слоя в уровне каждого этажа на специальные Г-образные элементы, заделанные в кладку, или на разгрузочные железобетонные, металлические пояса. Под опорным поясом на толщину облицовочного слоя оставляется компенсационный шов толщиной 20 ... 25 мм, который заполняется мягкой прокладкой и, с наружной стороны, расширяется гидроизоляционной мастикой. Вертикальный шов между лицевым кирпичом и стеной следует заполнять раствором.

Крепление облицовочного слоя на гибких связях к теплоизоляционным слоям не допускается.

Анкеры для крепления лицевого бетонного кирпича должны изготавливаться из нержавеющей стали диаметром не менее 4 мм. **Количество анкеров** принимается из расчета: **один анкер на площадь облицовки не более 0,1 м**². Анкеры закрепляются в горизонтальных или вертикальных швах кладки. **Глубина заведения анкера в стену не менее 120 мм (рис. 2).**

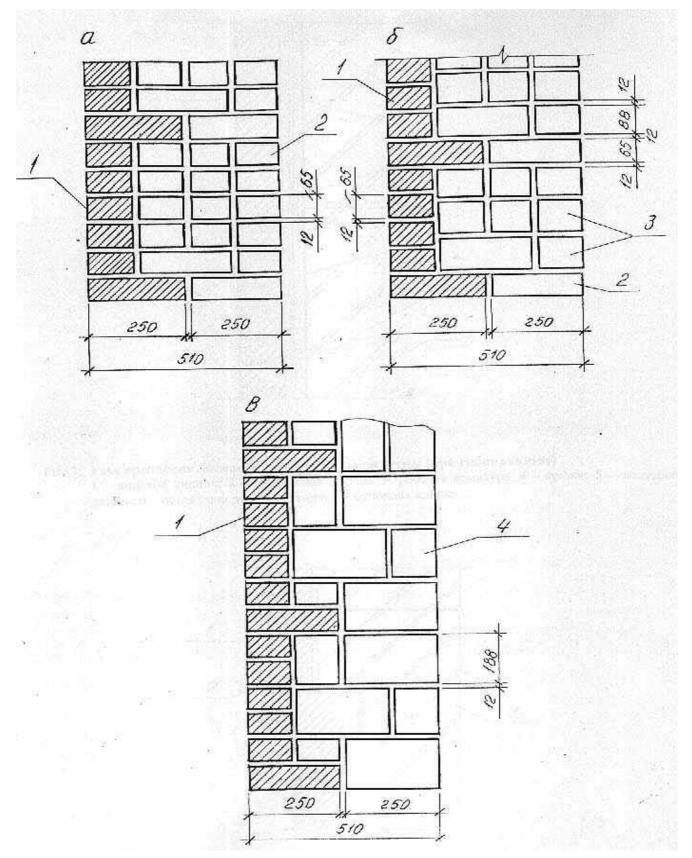


Рис. 1. Кладка из кирпича или керамических камней совместно с лицевым кирпичом

- а из кирпича толщиной 65 мм; б из кирпича толщиной 88 мм; в из керамических камней:
- 1 лицевой кирпич; 2 кирпич обыкновенный толщиной 65 мм; 3 то же, толщиной 88 мм;
 - 4 керамические пустотелые камни.

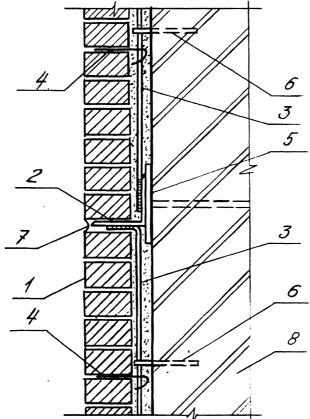


Рис. 2. Узел крепления лицевого кирпича по полю стены (при гибких связях)

1. - лицевой кирпич; 2- монтажная деталь; 3 - рабочая арматура; 4 - крюки; 5 - закладная

деталь; 6- петля (анкер); 7 - мастика; 8 - основная кладка.

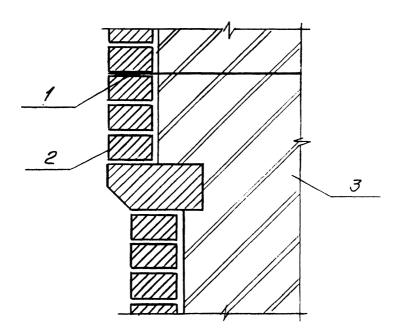


Рис. 3 Конструктивное армирование кладки стены с облицовкой при наличии выступов

- 1 металлическая сетка; 2 лицевой кирпич; 3 основная кладка
- 3.9. В простенках многоэтажных зданий, облицованных лицевым кирпичом с жестким соединением облицовки и кладки, во всех этажах, где расчетная несущая

способность используется более чем на 90%, должно предусматриваться **конструктивное армирование**. Сетка из стали диаметром 4 мм с ячейками размером не более 150 x 150мм укладываются в третях простенка, но не реже чем через 1 м.

3.10. При наличии **наружных обрезов** с стенах с облицовкой, во избежание среза облицовки на участке кладки, примыкающей к обрезу, рекомендуется укладывать арматурные сетки из стали диаметром 4...5 мм с ячейками не менее 80 х 80 мм. Сетки укладываются по всему сечению стены, включая облицовку, начиная с третьего ряда кладки после выступа (рис. 3).

4. ПРАВИЛА РАСЧЕТА СТЕН С ОБЛИЦОВКАМИ

- 4.1. Стены с облицовками рассчитываются по правилам раздела "Многослойные стены" главы СНиП по проектированию каменных и армокаменных конструкций. Вследствие различной жесткости облицовки и основного слоя стены, их несущая способность при совместной работе полностью не используется, что при расчете стен с облицовкой учитывается введением в расчетные формулы коэффициентов условий работы.
- 4.2. При расчете стен с облицовкой лицевым бетонным кирпичом по несущей способности различаются следующие случаи:
- слой облицовки жестко связывается со стеной в процессе ее возведения тычковыми рядами камней или какими-либо другими способами, которые могут рассматриваться как жесткие. При жестком соединении облицовки с материалом стены расчет производится с учетом их разной прочности и деформируемости при совместной работе в стене:
- слой облицовки связан со стеной в процессе ее возведения гибкими связями. В этом случае каждый слой расчитывается раздельно на воспринимаемые ими нагрузки; нагрузки от покрытий и перекрытий передаются только на внутренний слой;
- слой облицовки жестко крепится к стене (на растворе и анкерах) после ее возведения.
 В этом случае расчет стены производятся как однослойной без учета облицовочного слоя.
- 4.3. При толщине облицовочного слоя более 40 мм, жестко связанного со стеной, расчет производится по сечению, приведенному к одному материалу. При приведении сечения слоя принимается фактической, а ширина слоев (по длине стены) изменяется пропорционально отношениям расчетных сопротивлений и коэффициентам использования прочности слоев по формуле:

уле:
$$B_{np} = B \xrightarrow{m_i R_i} , (1)$$

$$m R$$

где B_{np} - приведенная ширина слоя; B - фактическая ширина слоя; R и m - расчетное сопротивление и коэффициент использования прочности слоя, κ которому приводится сечение; R_i и m_i - расчетное сопротивление и коэффициент использования прочности любого другого слоя стены.

- 4.4. Коэффициенты использования прочности слоев m и m_i могут быть определены по характеристикам жесткости слоев по формулам:
- если деформируемость кладки [$\varepsilon_{\kappa n}$] больше чем облицовки [ε_{o}], то прочность кладки не может быть использована полностью без нарушения, в этом случае: для облицовки $m_{o} = 1$, для кладки

$$m_k = \mu_k (1 - e^A)$$
, (2)

где е^A - основание натурального логарифма.

$$A = c \ln(1-1\mu_o), (3)$$

$$c = \frac{\alpha_k \mu_o \nu_o}{\alpha_o \mu_k \nu_o}$$

• если деформируемость облицовки $[\epsilon_0]$ больше, чем кладки $[\epsilon_{\kappa n}]$, то прочность облицовки не может быть использована полностью, в этом случае: для кладки mk = I, для облицовки

$$m_o = \mu_o(1 - e^B), (4)$$

$$B = 1/c[ln(1-1/\mu_k)], (5)$$

4.5. Характеристики деформаций α и μ в формулах (2)-(5) для материалов стены и облицовки принимаются по таблице 1.

Таблица 1

№ п/п	Вид стенового или облицовочного материала	Характеристики деформаций при прочности раствора α и μ			
		200-25	10	4	2
1	Крупные блоки и плиты, ные из тяжелого и крупнопористого бетона на заполнителях и тяжелых горных пород	1500/1,1	1000/1,1	750/1,1	750/1,1
2	Из камней и плит, изготовленных из тяжелого бетона и тяжелых горных пород	1500/1,1	1000/1,1	750/1,1	750/1,1
3	Из крупных блоков и плит, изготовленных из бетона на легких заполнителях, плотного силикатного бетона и из легких горных пород	1000/,1,5	750/1,5	500/1,5	500/1,5
4	Кладка из керамических пустотелых камне	1200/1,1	1000/1,1	750/1,1	500/1,1
5	Кладка из кирпича глиняного пластического прессования	1000/1,1	750/1,1	500/1,1	350/1,1
6	Кладка из кирпича глиняного полусухого прессования	500/1,1	500/1,1	350/1,1	350/1,1
7	Кладка из силикатного кирпича	750/1,1	500/1,1	350/1,1	350/1,1

4.6.Полные деформации слоев при напряжении о с учетом ползучести определяются по формуле:

$$\varepsilon = v\sigma/E$$
, (6)

где v=1,8 - для кладки из керамических пустотелых камней (h = 138 мм);

- v = 2,2 для кладки из глиняного кирпича полусухого и пластического прессования;
- v = 2.8 для кладки из крупных блоков, камней, плит, изготовленных из тяжелого бетона;
- v = 3.0 для кладки из силикатного кирпича, легкобетонных и силикатных блоков и плит;
- v = 3.5 для кладки из крупных блоков и камней, изготовленных из автоклавного ячеистого бетона.
- 4.7. Расчет стен с облицовками следует производить по СНиП по проектированию каменных и армокаменных конструкций по формулам (10)-(13). В формулах принимается: площадь приведенного сечения Е_{тт} площадь сжатой части приведенного сечения $F_{\text{пр,сж}}$ и расчетное сопротивление слоя, к которому приводится сечение с учетом коэффициента использования его прочности mR.

Коэффициенты продольного изгиба φ , φ_k и коэффициент $m_{\pi\pi}$ следует определять по указаниям раздела 4 главы СНиП по проектированию каменных и армокаменных конструкций для материала стены.

Коэффициент m принимаются в соответствии с п. 4.4 Рекомендаций.

В многослойных стенах, где одним из слоев является облицовка, т для несущего слоя, к которому приводится сечение, принимается наименьшее для случаев совместной его работы с граничащими слоями.

В случае отсутствия перевязки вертикальных швов в облицовке из лицевого кирпича к расчетному сопротивлению кладки вводится дополнительный коэффициент условия работы, равный 0,9. Эксцентриситет всех усилий определяется по отношению центра тяжести приведенного сечения. Величины эксцентриситета $e_0 > 0.25\gamma$ в сторону облицовки не допускается (у - расстояние от центра тяжести до края приведенного сечения в сторону эксцентрисистета). При эксцентриситете нагрузки в сторону облицовки принимается коэффициент $\omega = 1$. При эксцентрисистете, направленном в сторону вну -

тренней грани стены
$$e_o > \gamma \frac{1-m}{1+m}$$
 , но не меньше $0,1$ γ расчет производится как однос -

лойного сечения без учета коэффициентов т и ті.

4.8. При гибких связях облицовки со стеной каждый слой рассчитывается отдельно. При этом коэффициент ф при расчете слоев принимается для условной толщины, равной сумме толщин конструктивных слоев, умноженной на коэффициент 0,7 и для приведенной упругой характеристики α_{пр}, определяемой

$$\alpha = \frac{\sum \alpha i h i}{\sum h i}. (7)$$

где α_i - упругие характеристики конструктивных слоев; h_i - толщины слоев.

4.9. Расчет анкеров крепления облицовочного слоя к основной кладке при гибких связях производится следующим образом.

При шаге анкеров по высоте стены h наибольшее усилие среза на один анкер определяется по формуле

 $T = \frac{\tau_{cp} \, bh}{n}, (8)$

- 4.10. Определение расчетных перепадов температур.
- 4.10.1. Расчетный перепад температур определяется как разница средних температур стены или облицовки для января и июля, вычисленных с учетом колебаний температуры наружного и внутреннего воздуха, солнечной радиации и относительной влажности воздуха.

$$\Delta t_i = t_{ch}^{*VII} - t_{cp}^{*I}, (17)$$

- 4.10.2. Средние температуры t_{cp}^* для стен с облицовками определяются как многослойных сечений с учетом указаний "Пособия по расчету х зданий. Выпуск 4. Расчет конструкций крупнопанельных зданий на температурные воздействия (М., 1976).
 - 4.10.3. Средняя температура t^*_{cpi} слоя вычисляются по формуле

$$t^*_{cpi} = t^*_{B} - (t^*_{B} - t^*_{B}) \frac{0.133 + \sum_{i=1}^{i-1} R_{i} + 0.5R_{i}}{0.183 + \sum_{i=1}^{n} R_{i}}, (18)$$

$$R_i = h_i/\lambda_i$$

Где λ_i - коэффициенты теплопроводности слоев по СНиП II-3-79* "Строительная теплотехника"; h_i - толщина слоя; $t^*_{\scriptscriptstyle H}$ - приведенная температура наружного воздуха

в июле
$$t_{\rm H}^* = t_{\rm cp.\, cyr}^{\rm max} + A_{\rm cyr} + 30 {\rm p}, (19)$$

в январе
$$t_{\rm H}^* = t_{\rm cp.\, cyr}^{\rm min} + A_{\rm cyr}, (20)$$

р - коэффициент поглощения солнечной радиации (приложение 7 СНиП II-3-79*), t_B^* - приведенная температура внутреннего воздуха

в июле
$$t_{H}^{*} = t_{cp. cyt}^{max}$$
,

в январе
$$t^*_{_{\rm B}} = t^{_{\rm H}}_{_{\rm B}} \pm 5$$
,

 $t^{_{\rm H}}_{_{\rm B}}$ - нормативная температура внутреннего воздуха;

 $A_{\text{сут}} = A_{\text{сут. cp}}$ - 3° - расчетная амплитуда суточных колебаний температуры наружного воздуха;

 $A_{\text{сут. cp}}$ - средняя амплитуда суточных колебаний принимается по СНиП 2.01.01-82 "Строительная климатология и геофизика" в половинном от указанной величины;

 $t_{\rm cp.~cyr}^{\rm min}$ и $t_{\rm cp.~cyr}^{\rm max}$ - наибольшая и наименьшая средняя температура за сутки принимается по СНиП 2.01.01-82

где h - шаг анкеров по высоте стены;

n - количество анкеров в ряду (по ширине стены);

 τ_{cp} - напряжение среза при расчетной нагрузке в стене.

Величина τ_{cp} при расчете анкеров определяется по формулам (10)-(16), в которых величина коэффициенты жесткости связей определяется по формуле

$$k_{ca} = \frac{6(1/E_1 + 1/E_2)}{dn_a n}, (9)$$

где d - диаметр анкера;

n_a - количество анкера;

n - количество анкеров в ряду по ширине.

Величина τ_{cp} определяется по формуле

$$\tau_{\rm cp} = 1/b(\tau_1 + \tau_{\rm nn3} + \tau_{\rm yc} + \tau_{\rm i}),$$
(10)

где b - ширина сечения;

$$\tau_1 = \lambda \gamma^{-1} (\sigma_1 / E_1 - \sigma_2 / E_2),$$
 (11)

$$\tau_{\text{плз}} = \lambda \gamma^{-1} (\sigma_1 \nu_1 / E_1 - \sigma_2 \nu_2 / E_2),$$
 (12)

$$\tau_{vc} = \lambda \gamma^{-1} (\alpha_{vc1} - \alpha_{vc2}), \tag{13}$$

$$\tau_{t} = \lambda \gamma^{-1} (\alpha t_{1} \Delta t_{1} - \alpha t_{2} \Delta t_{2}), \qquad (14)$$

$$\lambda = \sqrt{\xi \overline{\gamma} \quad ,} \tag{15}$$

$$\gamma = 1/E_1F_1 + 1/E_2F_2 + v^2/E_1J_1 + E_2J_2, \tag{16}$$

где ξ - коэффициент жесткости соединения облицовки со стеной. При креплении лицевого кирпича к стене на растворе и анкерах принимать:

при бетонных стенах $\xi = 9 * 10^2 \text{ кгс/см}^2$, при кирпичных стенах $\xi = 7 * 10^2 \text{ кгс/см}^2$,

 E_1 , F_1 , J_1 - модуль упругости, площадь и момент инерции основной кладки стены; E_2 , F_2 , J_2 - то же, для слоя облицовки из лицевого бетонного кирпича;

 $V_1,\ V_2$ - коэффициенты ползучести материала стены и облицовки из лицевого бетонного кирпича;

υ - расстояние между геометрическими осями слоев (облицовки и стены);

 $\alpha_{yc1}, \alpha_{yc2}$ - коэффициенты усадки материала стены и облицовки;

 σ_1 , σ_2 - напряжения сжатия в слоях от расчетных усилий в стене;

 α_{t1}, α_{t2} - расчетные перепады температур в течение годового цикла;

 Δt_1 , Δt_2 - расчетные перепады температур в течение годового цикла;

 au_1 , $au_{\text{плз}}$, $au_{\text{ус}}$, au_{t} - напряжения среза на единицу длины соответственно вследствие неодинаковой загрузки слоев, ползучести и усадки материалов, температурных воздействий.

Модули упругости Е принимаются в соответствии с действующими нормативными документами.

5. ТЕХНОЛОГИЯ ОБЛИЦОВОЧНЫХ РАБОТ, ТРЕБОВАНИЯ К ОТДЕЛКЕ

- 5.1. Облицовка стен лицевым бетонным кирпичом производится при одновременном возведении на том же растворе.
- 5.2. Растворы, применяемые для облицовочных работ, не должны образовывать высолов на поверхности облицовочного слоя.
- 5.3. Рекомендуется для защиты возводимой стены от воздействия атмосферных осадков (дождя, снега) накрывать кладку после окончания работ полиэтиленовой пленкой. Не рекомендуется класть облицовку в дождливую погоду.
- 5.4. Рекомендуется после возведения кладки для предотвращения появления высолов на фасадах и увеличения морозостойкости применять водоотталкивающие покрытия - гидрофобизаторы
- 5.6. Облицовочные работы следует выполнять при строгом соблюдении правил техники безопасности в соответствии со СНиП III-4-80* "Техника безопасности в строительстве".
- 5.7. Производство и контроль качества облицовочных работ выполнять с соблюдением требований СНиП 3.03.01-87 "Несущие и ограждающие конструкции".
- 5.8. Облицовку готовых стен эксплуатируемых зданий, а также сложных объектов следует выполнять по проектам производства работ или технологическим картам, разработанными подрядной или проектной организациями.

ПРИМЕР РАСЧЕТА КИРПИЧНОЙ СТЕНЫ, ОБЛИЦОВАННОЙ ЛИЦЕВЫМ БЕТОННЫМ КИРПИЧОМ ЧМП "ФАГОТ"

Расчет

Продольные наружные стены запроектированы самонесущими, максимальная нагрузка на метр длины стены в нижнем этаже N = 10 тс/m.

Стены толщиной 51 см выполняются из глиняного кирпича пластического прессования марки 100 на растворе марки 75, облицовка из бетонных лицевых кирпичей шириной 120 мм типа СКО-Л-200/2200/50 на растворе М75 с креплением непосредственно к стене на растворе и анкерах.

Расчет соединения облицовки со стеной производим по прочности анкеров без учета контакта по растворному шву, рассчитываемого по формулам (10) - (16) Рекомендаций.

Из условий п. 3.8 Рекомендаций анкеры диаметром 4 мм установлены с шагом 300 мм по высоте и ширине стены и на ширину простенка 100 см приходится 3 анкера.

В расчете приняты следующие характеристики:

1) основная стена:

$$E_1 = 1000 \cdot 2 \cdot 17 = 3.4 \cdot 10^4 \text{ kpc/cm}^2$$
; $F_1 = 51 \cdot 100 = 5100 \text{ cm}^2$; $J_1 = 100 \cdot 51^3 / 12 = 11.1 \cdot 10^5 \text{ cm}^4$;

2) облицовочный слой из бетонного лицевого кирпича: $E_2=1500 \cdot 2 \cdot 25=7,5 \cdot 10^4 \,\mathrm{krc/cm^2}; \, F_2=12 \cdot 100=1200 \,\mathrm{cm^2}; \, J_1=100 \cdot 12^3/12=14400 \,\mathrm{cm^4};$

$$v = 31.5$$
 cm.

По формуле (16) рекомендаций определяем:

$$\gamma = 1/E_1F_1 + 1/E_2F_2 + \upsilon^2/E_1J_1 + E_2J_2 = 1/3, 4 \cdot 10^4 \cdot 5100 + 1/7, 5 \cdot 10^4 \cdot 1200 + 31, 5^2/3, 4 \cdot 10^4 \cdot 11, 1 \cdot 10^5 + 7, 5 \cdot 10^4 \cdot 14400 = 4, 25 \cdot 10^{-8} \text{ kpc}.$$

По формуле (15) Рекомендаций определяем коэффициент λ при ξ =7 ·10² кгс/см² λ = $\sqrt{7$ x10³ x 4.25 x 10⁻⁸=1.72 ·10⁻²

Далее по формулам (11) - (14) Рекомендаций вычисляются максимальные значения (расчет не приводится).

Нагрузка определяется только на слой основной кладки, облицовка непосредственно не загружается, поэтому $\sigma_2 = 0$.

$$\sigma_1 = N/F = 10000 / 5100 = 1.96 \text{ kgc/cm}^2$$
.

$$\Sigma \tau = (\tau_1 + \tau_{\text{плз}} + \tau_{\text{vc}} + \tau_{\text{t}}) = 350 \text{ кгс/см}^2$$
 (принято условно),

$$\tau_{cp} = 350 \cdot 1/100 = 3.5 \text{ kgc/cm}^2$$
.

Определим коэффициент жесткости анкерных связей:

$$\varepsilon_a = 1 / K_{c_A} \cdot h$$
;

$$\kappa_{\rm c, q} = \frac{6 \; (1/E_1 + 1/E_2)}{\text{dnan}}; \lambda_{\rm a} = \sqrt{\epsilon_{\alpha} \gamma} = \sqrt{4,25 \; \times 10^{-8} \times 312} = 0,36 \times 10^{-2} \, 1/\text{cm}.$$

$$\epsilon_a \!\!= d \cdot n_a \cdot n/6 (1/E_1 + 1/E_2) h = 0.4 \cdot 2 \cdot 3/2.94 \cdot 10^5 + 1.33 \cdot 10^{-5}) \ 30 = 312 \ \text{kgc/cm}^2$$

В связи с тем, что величина $\tau_{cp} = \Sigma \tau$ пропорциональна λ , при связях только на анкерах

$$\tau_{cp}{}^{a} = \ \tau_{cp} \ \lambda_{a} \, / \, \lambda = 3.5 \cdot 0.36 \cdot 10^{\text{--}2} \, / \, 1.72 \cdot 10^{\text{--}2} = 0.72 \ \text{kpc/cm}^{2}.$$

При шаге анкеров $h=30\ cm$ наибольшее усилие среза, приходящиеся на анкер равно:

$$T = \tau_{cp}^{a} bh/n = 0.72 \cdot 100 \cdot 30/3 = 720 \text{ kgc}.$$

Если при принятых диаметре и марке стали для анкеров это усилие больше, чем может воспринять один, то их количество и диаметр должны быть увеличены.