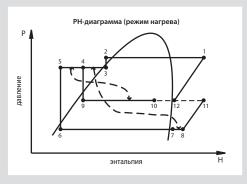

Технология ZUBADAN


Mr.SUM_™ полупромышленная серия

Уникальная технология ZUBADAN, разработанная корпорацией Mitsubishi Electric, обеспечивает стабильную теплопроизводительность при понижении температуры наружного воздуха.

В системах ZUBADAN применяется метод парожидкостной инжекции. В режиме обогрева давление жидкого хладагента, выходящего из конденсатора, роль которого выполняет теплообменник внутреннего блока, немного уменьшается с помощью расширительного вентиля LEV В. Парожидкостная смесь (точка 3) поступает в ресивер Power Receiver. Внутри ресивера проходит линия всасывания, и осуществляется обмен теплотой с газообразным хладагентом низкого давления. За счет этого температура смеси снова понижается (точка 4), и жидкость поступает на выход ресивера. Далее некоторое количество жидкого хладагента ответвляется через расширительный вентиль LEV С в цепь инжекции — теплообменник HIC. Часть жидкости испаряется, а температура образующейся смеси понижается. За счет этого охлаждается основной поток жидкого хладагента, проходящий через теплообменник HIC (точка 5). После дросселирования с помощью расширительного вентиля LEV А (точка 6) смесь жидкого хладагента и образовавшегося в процессе понижения давления пара поступает в испаритель, то есть теплообменник наружного блока. За счет низкой температуры испарения тепло передается от наружного воздуха к хладагенту, и жидкая фаза в смеси полностью испаряется (точка 7). В результате прохода через трубу низкого давления в ресивере Power

Receiver перегрев газообразного хладагента увеличивается, и фреон поступает в компрессор. Кроме того, этот ресивер сглаживает колебания промежуточного давления при флуктуациях внешней тепловой нагрузки, а также гарантирует подачу на расширительный вентиль цепи инжекции только жидкого хладагента, что стабилизирует работу этой цепи.

Часть жидкого хладагента, ответвленная от основного потока в цепь инжекции, превращается в парожидкостную смесь среднего давления. При этом температура смеси понижается, и она подается через специальный штуцер инжекции в компрессор, осуществляя полное промежуточное охлаждение хладагента в процессе сжатия и обеспечивая тем самым расчетную долговечность компрессора.

Расширительный вентиль LEV В задает величину переохлаждения хладагента в конденсаторе. Вентиль LEV А определяет перегрев в испарителе, а LEV С поддерживает температуру перегретого пара на выходе компрессора около 90°С. Это происходит за счет того, что, попадая через цепи инжекции в замкнутую область между спиралями компрессора, двухфазная смесь перемешивается с газообразным горячим хладагентом, и жидкость из смеси полностью испаряется. Температура газа понижается. Регулируя состав парожидкостной смеси, можно контролировать температуру нагнетания компрессора. Это позволяет не только избежать перегрева компрессора, но и оптимизировать теплопроизводительность конденсатора.

А Теплообменник HIC

Теплообменник НІС в разрезе

Хладагент, проходящий расширительный вентиль LEV C, который понижает давление

Хладагент, не проходящий расширительный вентиль LEV C

Назначение: Жидкий хладагент частично испаряется, и двухфазная смесь жидкость—газ подается на вход инжекции компрессора.

Эффект: Увеличение энергоэффективности системы при работе цепи инжекции хладагента.

Инжекция жидкого хладагента создает существенную нагрузку на компрессор, снижая его энергетическую эффективность. Для уменьшения этой нагрузки введен теплообменник НІС. Передача теплоты между потоками хладагента с разными значениями давления приводит к тому, что часть жидкости испаряется. Образовавшаяся парожидкостная смесь при инжекции в компрессор создает меньшую дополнительную нагрузку.

В Компрессор со штуцером инжекции

Назначение: Увеличение расхода хладагента через компрессор.

Эффект:

Увеличение теплопроизводительности при низкой температуре наружного воздуха. Повышение температуры воздуха на выходе внутреннего блока, а также сокращение длительности режима оттаивания.

Парожидкостная смесь, прошедшая теплообменник HIC, поступает через штуцер инжекции в компрессор. Таким образом, компрессор имеет два входа: штуцер всасывания и штуцер инжекции. Управляя расходом хладагента в цепи инжекции, удается увеличить циркуляцию хладагента через компрессор при низкой температуре наружного воздуха, в результате повышается теплопроизводительность системы. В верхней неподвижной спирали компрессора предусмотрены отверстия для впрыска хладагента на промежуточном этапе сжатия.

Технология ZUBADAN

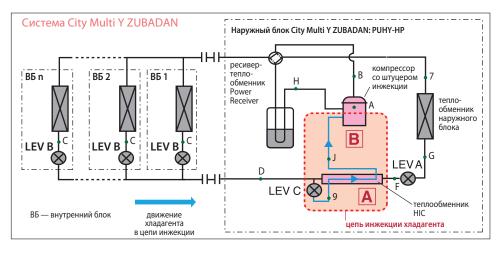
CITY MULTI G4 мультизональные VRF-системы

Общие сведения

Системы СИТИ МУЛЬТИ являются оптимальным решением для небольших и средних зданий офисного или жилого типа. Системы с изменяемым расходом хладагента являются более экономичными, чем традиционные центральные системы на базе холодильных машин. Благодаря своим преимуществам системы СИТИ МУЛЬТИ все чаще применяются при кондиционировании даже крупных многоэтажных зданий.

В состав серии мультизональных VRF-систем CITY MULTI входит 14 конструктивных модификаций внутренних блоков: канальные настенные, кассетные и многие другие. Всего с учетом всех модификаций производительности насчитывается 92 модели внутренних блоков.

Модельный ряд внутренних блоков дополняют специальные контроллеры секций охлаждения приточных установок. Внешняя фреоновая секция охлаждения и внутренние блоки могут быть подключены к общему наружному блоку мультизональной системы CITY MULTI.



В современной серии наружных блоков G4 заложена модульность, то есть существуют несколько модулей наружных блоков, из которых формируются все мощностные модификации наружных агрегатов. В серии G4 применяются только компрессоры с инверторным приводом. Это продлевает срок службы систем и уменьшает нагрузку на электрическую сеть, так как полностью отсутствуют высокие пусковые токи.

В системах СІТҮ MULTI предусмотрены различные приборы для индивидуального управления внутренними блоками, а также для централизованного контроля систем. Разработан программно-аппаратный комплекс Mitsubishi Electric для выполнения основных задач диспетчеризации: мониторинг и контроль системы, раздельный учет электропотребления, ограничение пиковой нагрузки на электросеть, взаимодействие со сторонним оборудованием. Предусмотрены средства взаимодействия с центральными системами диспетчеризации зданий (BMS) с использованием технологий LonWorks, BACnet, ElB, Modbus, Ethernet (XML).

Технология ZUBADAN

Дросселирование основного потока жидкого хладагента в гидравлическом контуре системы ZUBADAN происходит ступенчато с помощью двух электронных расширительных вентилей LEV A и LEV B. В результате между расширительными вентилями образуется точка среднего давления. Жидкий хладагент ответвляется из этой точки и частично испаряется в теплообменнике НІС (труба в трубе). Парожидкостная смесь, соотношение пара и жидкости в которой определяется работой электронного расширительного вентиля LEV C, поступает на специальный штуцер инжекции компрессора. Далее внутри компрессора смесь инжектируется в замкнутую область между спиралями компрессора на промежуточном этапе сжатия. Фактически спиральный одноступенчатый компрессор превращается в двухступенчатый.

Для чего нужна цепь инжекции хладагента в компрессор?

Производительность наружного теплообменника (испарителя) понижается при уменьшении температуры наружного воздуха. Испаритель производит мало пара, который после сжатия в компрессоре поступает в теплообменник внутреннего блока – конденсатор. Недостаточное количество пара объясняет малое количество теплоты, выделяемое в процессе конденсации, а значит, и пониженную теплопроизводительность системы. Для решения проблемы нужно подать на вход компрессора дополнительное количество пара. Это главная задача цепи инжекции.

Фактически, спиральный одноступенчатый компрессор превращается в двухступенчатый.

Фактически компрессор имеет два входа: линию всасывания низкого давления и линию инжекции промежуточного давления. Если на улице еще не очень холодно, то испаритель производит достаточное количество пара. Он поступает в компрессор главным образом через линию низкого давления, а линия инжекции почти не задействована. В этом режиме тепловой насос работает с максимальной эффективностью, поглощая теплоту наружного воздуха и перенося ее в помещение. По мере снижения температуры наружного воздуха количество пара в этой линии уменьшается, и система управления увеличивает расход хладагента в цепи инжекции, поддерживая требуемый расход газа через компрессор. Однако следует понимать, что цепь инжекции не переносит теплоту от наружного воздуха, а энергетический эффект в конденсаторе от дополнительного количества сжатого газа полностью обеспечен за счет повышения потребляемой мощности компрессора.

Кроме основного назначения цепь инжекции выполняет еще несколько второстепенных задач. Во-первых, снижение температуры сжатого газа на выходе из компрессора. Для этого жидкий хладагент не полностью испаряется в теплообменнике HIC, и дозированное количество жидкости поступает в компрессор. Жидкость испаряется там и охлаждает сжатый газ, предотвращая перегрев компрессора. Вторая задача – это увеличение производительности системы во время режима оттаивания наружного теплообменника. Как известно, процесс оттаивания происходит за счет обращения холодильного цикла и прерывает режим нагрева воздуха, поэтому желательно провести этот процесс быстро – пусть даже ценой повышенного электропотребления. Система управления перераспределяет поток жидкого хладагента, уменьшая его расход через теплообменник внутреннего блока (уменьшается степень открытия электронного расширительного вентиля LEV B) и увеличивая расход через цепь инжекции (LEV C). В результате во время оттаивания из внутреннего блока не идет холодный воздух, процесс происходит быстро и незаметно для пользователя.