

3HEPFOMEPA

НОВАЯ ЛИНЕЙКА ПРИБОРОВ УЧЕТА

Подробная информация на страницах 4, 8

Максимальное соответствие установочных размеров индукционным счетчикам снимает одну из главных проблем современного потребителя электроэнергии — замену старых счетчиков на новые.

Содержание

однофазные		
O FLIOTA DIA MULIO	CE101	4
однотарифные	CE200	5
многотарифные	CE102	6
многотарифпыс	CE102M	8
	CE201	10
	CE205	12
	CE208	14
трёхфазные	ЦЭ6803В	16
	CE300	17
однотарифные	CE302	18
многотарифные	CE305	19
многотарифные	CE301	20
	CE303	22
многофункциональные	цэ6850М	24
	CE304	26
	Приложение А Телеметрический импульсный канал	28
	Приложение Б Габаритные чертежи корпусов	29
	Сертификация	31

Счётчики электроэнергии

Компания предлагает широкий спектр однофазных и трехфазных счетчиков электрической энергии, обеспечивающих точный учет активной и реактивной электроэнергии автономно или в составе информационно-измерительных систем.

Счетчики электроэнергии производства компании «Энергомера» обеспечивают хранение информации об энергопотреблении в точке учета и осуществляют двунаправленный обмен данными с использованием различных каналов связи: PLC, радио, GSM и другие.

В счетчиках предусмотрено наличие разнообразных программно-аппаратных опций, например, возможность подключения резервного источника питания, телеметрический вход и выход, реле сигнализации и управления нагрузкой.

Системы, построенные на базе этих решений, используются для автоматизации контроля, коммерческого и технического учета электроэнергии и мощности на энергетических объектах, промышленных предприятиях, в энергосбытовых компаниях, в коммунальном и бытовом секторах, а также для создания многоуровневых систем контроля и учета электроэнергии и мощности в энергосистемах.

«Энергомера» — ведущий производитель средств учета электроэнергии на рынке России и стран ближнего зарубежья.

Торговая марка «Энергомера» становится известной на мировом рынке электротехнического оборудования. В последнем исследовании английской компании ABS Energy Research «Энергомера» впервые была названа в числе ведущих мировых производителей счетчиков электрической энергии, заняв 7-е место.

счётчики электроэнергии однофазные

Однотарифные

Предназначены для измерения и учета активной электроэнергии в однофазных двухпроводных цепях переменного тока, по одному тарифу.

CE101

отличительные особенности

- Повышенная защита от хищений.
- Наличие шунта в качестве измерителя тока.
- Малое собственное энергопотребление
- Световой индикатор работы.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.

область применения

В бытовом и муниципальном секторах: в жилых и общественных зданиях, мобильных сооружениях, коттеджах, гаражах.

В производственном секторе: на предприятиях мелкомоторного производства, торговли и сферы обслуживания.

основные технические характеристики

Класс точности	1
Число тарифов	1
Частота измерительной сети, Гц	50±2,5
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5(60); 10(100)
Стартовый ток (чувствительность), мА	10; 20
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	9(0,8)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт • ч	800, 1600, 3200, 6400
Диапазон рабочих температур счетчиков: с механическим отсчетным устройством, °C	от -40 до +70
Диапазон рабочих температур счетчиков: с электронным отсчетным устройством, °С	от −30 до +70

структура условного обозначения

базовые исполнения

CE101 S6 145 M6	CE101 S6 145	
CE101 S6 148 M6	CE101 S6 148	
CE101 R5 145 M6	CE101 R5 145	
CE101 R5 148 M6	CE101 R5 148	
CF101 R5 1 145 M6	CF101 R5 1 145	

характеристики надежности

- Средняя работа до отказа не менее 220000 часов.
- Межповерочный интервал –16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 5 лет.

нормативно-правовое обеспечение

ГОСТ Р 52320-2005 (МЭК62052-11:2003)

FOCT P 52322-2005 (MЭK62053-21:2003)

Однотарифные, двухэлементные

Предназначены для измерения и учета активной электроэнергии в однофазных двухпроводных цепях переменного тока, по одному тарифу.

CE200

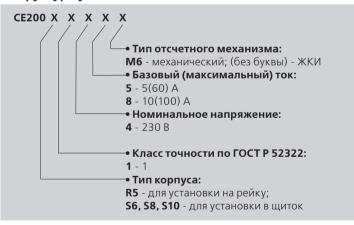
область применения

В бытовом и муниципальном секторах: в жилых и общественных зданиях, мобильных сооружениях, коттеджах, гаражах.

В производственном секторе: на предприятиях мелкомоторного производства, торговли и сферы обслуживания.

характеристики надежности

- Средняя работа до отказа не менее 160000 часов.
- Межповерочный интервал 16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации – 5 лет.


основные технические характеристики

Класс точности	1
Число тарифов	1
Частота измерительной сети, Гц	50±2,5
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5(60); 10(100)
Стартовый ток (чувствительность), мА	20; 40
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	9(0,6)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт • ч	3200
Диапазон рабочих температур счетчиков: с механическим отсчетным устройством, °C	от -40 до +70
Диапазон рабочих температур счетчиков: с электронным отсчетным устройством, °С	от −30 до +70

структура условного обозначения

базовые исполнения

CE200 R5 145 M6	CE200 S6 145 M6

отличительные особенности

- Повышенная защита от хищений.
- Наличие двух измерительных элементов.
- Наличие шунта в качестве измерителя тока.
- Малое собственное энергопотребление.
- Световой индикатор работы.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.

нормативно-правовое обеспечение

ГОСТ Р 52320-2005 (МЭК62052-11:2003)

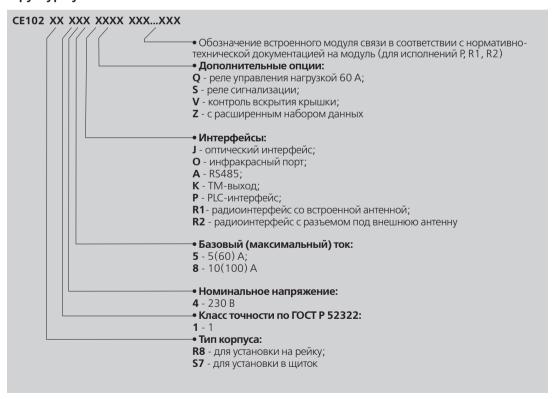
FOCT P 52322-2005 (M9K62053-21:2003)

Предназначены для измерения активной электроэнергии в однофазных цепях переменного тока и организации учета по четырем (восьми) тарифам с передачей накопленной информации через инфракрасный порт, оптопорт, цифровой интерфейс RS485, радио- или PLC-модем.

CE102

область применения

В бытовом секторе, на предприятиях мелкомоторного производства и сферы обслуживания.


отличительные особенности

- Защита от несанкционированного доступа.
- Энергонезависимая память.
- Управление нагрузкой в 3-х режимах.
- Сигнализация превышения ли-
- Модификации с PLC- и радиомодемами.
- Устойчивость к климатическим, механическим, тепловым и электромагнитным воздействиям.
- Модификации со встроенным реле управления нагрузкой до 60 А.

основные технические характеристики

Класс точности	1
Число тарифов	4; (8 для исполнения Z)
Частота измерительной сети, Гц	50±2,5
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5(60); 10(100)
Стартовый ток (чувствительность), мА	10; 20
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	6(1,0)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт • ч	800, 3200
Диапазон рабочих температур, °С	от -40 до +70

структура условного обозначения

базовые исполнения

CE102 S7 145 JAKSVZ	CE102 S7 148 JAKSVZ
CE102 S7 145 JAKVZ	CE102 S7 148 JAKVZ
CE102 S7 145 JPKQVZ CCME-0002	

Счетчик обеспечивает автоматический вывод на дисплей следующей информации:

• Количество потребленной энергии суммарно и раздельно по задействованным тарифам нарастающим итогом текущего времени, действующего тарифа с заданной периодичностью (время индикации – не менее 5 сек.).

При нажатии на кнопку просмотра счетчик выводит на дисплей следующую информацию:

- текущее значение накопленной энергии суммарно и по задействованным тарифам нарастающим итогом;
- значения накопленной энергии суммарно и по тарифам на конец каждого месяца за 13 месяцев;
- показания текущей (минутной) мощности;
- текущую дату, сетевой адрес, лимиты;
- тарифные программы и особые даты текущего месяца.

При работе через интерфейс:

1. Счетчик обеспечивает считывание следующих параметров:

- текущих показаний накопленной энергии суммарно и раздельно по тарифам;
- значений энергии нарастающим итогом суммарно и раздельно, по тарифам за текущие и 45 предыдущих суток;
- значений энергии нарастающим итогом суммарно и раздельно по тарифам на конец каждого месяца за текущий и на 13 предыдущих месяцев;
- показаний текущей (минутной) мощности;
- журналов событий;
- получасовой мощности (за последние 30 мин.);

- мощностей за сутки, за последние 62 суток;
- графиков 15 мин.; 30 мин.; 60 мин. активных мощностей за последние 31, 62 и 124 суток соответственно (исполнение «z»);
- значений активной мощности, усредненных за прошедший 3-минутный интервал (исполнение «z»).

2. Счетчик обеспечивает возможность установки или изменения следующих параметров:

- конфигурации счетчика;
- текущего времени (часы, минуты, секунды) и даты (число, номер месяца, две последних цифры года, учет високосных лет);
- величины суточной коррекции хода часов;
- до 16 точек переключения тарифов для рабочих, субботних, воскресных дней и особых дат;
- до 12 месячных тарифных программ для каждого из типов дней;
- до 32 особых дат;
- сетевого адреса счетчика (65535 значений);
- абонентского номера счетчика (16 знаков);
- паролей чтения и записи в счетчик;
- лимитов по месячному потреблению электроэнергии суммарно и по тарифам, лимитов мощности (усредненной за 30 мин.) с процентом превышения для работы сигнализации по каждому тарифу (исполнение «z»).

Счетчик обеспечивает управление нагрузкой с использованием УЗО, внешнего коммутационного аппарата или встроенного реле по команде диспетчера с индикацией режима отключения, а также при наличии установленных зон управления нагрузкой.

характеристики надежности

- Средняя работа до отказа не менее 160000 часов.
- Межповерочный интервал 16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 5 лет.

нормативно-правовое обеспечение

ГОСТ Р 52320-2005 (МЭК62052-11:2003)

FOCT P 52322-2005 (M9K62053-21:2003)

ГОСТ Р 52323-2005 (МЭК62053-22:2003)

ГОСТ Р 52425-2005 (МЭК62053-22:2003)

Предназначены для измерения активной электроэнергии в однофазных цепях переменного тока и организации многотарифного учета электроэнергии, измерения параметров однофазной сети.

CE102M

область применения

- Счетчик предназначен для измерения активной энергии в однофазных цепях переменного тока, организации многотарифного учета электроэнергии, измерения параметров однофазной сети.
- Счетчик имеет интерфейсы связи и предназначен для работы, как автономно, так и в составе автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) для передачи измеренных или вычисленных параметров на диспетчерский пункт по контролю, учету и распределению электрической энергии.

основные технические характеристики

Класс точности	1
Число тарифов	4
Частота измерительной сети, Гц	50±2,5
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5(60); 10(100)
Стартовый ток (чувствительность), мА	10
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	9,0(0,8)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода	2000
Диапазон рабочих температур, °C	от -40 до +70

структура условного обозначения

базовые исполнения

CE102M S7 145-AV	CE102M S7 145-JV
CE102M R5 145-J	CE102M R5 145-A
CE102M R5.1 145-AVN	CE102M R5.1 145-JV

отличительные особенности

- Отображение показаний при отсутствии напряжения питания.
- Измерение и отображение параметров сети (ток, напряжение, частота).
- Контроль вскрытия крышки зажимов.
- Энергонезависимая память.
- Устойчивость к климатическим, механическим, тепловым и электромагнитным воздействиям.
- Модификация с оптическим портом, RS485.
- Защита памяти и памяти программ от несанкционированных изменений.
- Малое собственное энергопотребление.

Счетчик ведет учет по четырем тарифам с возможностью задания до 12 тарифных зон в пределах суток с дискретностью одна минута, индивидуально по каждому дню недели в сезонной программе.

Счетчик имеет жидкокристаллический индикатор, на котором отображается:

- учтенная и сохраненная в архивах энергия нарастающим итогом, за месяц, за сутки;
- текущие дата/время, заводской номер счетчика и другие вспомогательные параметры;
- измеренные значения физических величин параметров сети.

Счетчик имеет оптический порт или интерфейс RS485.

Счетчик обеспечивает возможность считывания через интерфейсы связи архивных данных и измеряемых параметров, а также считывание/запись программируемых параметров.

Счетчик обеспечивает возможность задания следующих параметров:

- заводского номера счетчика;
- текущих времени и даты;
- величины суточной коррекции хода часов;
- до 12 дат начала сезона с указанием для каждого дня недели отдельного суточного расписания;
- до 12 зон в суточном расписании;
- до 36 суточных расписаний;

- до 32 исключительных дней;
- пароля для доступа по интерфейсу (до 8 символов);
- идентификатора в соответствии с протоколом;
- скорости обмена (в том числе начальной).

Счетчики обеспечивают вывод на индикацию:

- количества активной электроэнергии нарастающим итогом суммарно и раздельно по 4 тарифам;
- количества активной электроэнергии нарастающим итогом суммарно и раздельно по 4 тарифам за текущий и 12 предыдущих месяцев;
- количества активной электроэнергии нарастающим итогом суммарно и раздельно по 4 тарифам за текущие и 44 предыдущих суток;
- текущих даты и времени.

Дополнительно счетчики обеспечивают измерение и вывод на индикацию:

- среднеквадратичное значение тока;
- среднеквадратичное значение напряжения;
- величину активной мощности, усредненную на интервале в 1 мин.;
- коэффициент активной мощности с ненормируемой точностью;
- частоту измерительной сети с ненормируемой точностью.

характеристики надежности

- Средняя работа до отказа не менее 220000 часов.
- Межповерочный интервал 16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 5 лет.

нормативно-правовое обеспечение

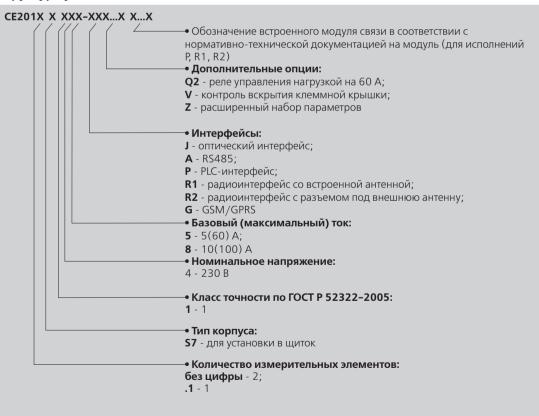
FOCT P 52320-2005 (M9K62052-11:2003) FOCT P 52322-2005 (M9K62053-21:2003)

Предназначены для измерения и учета активной электроэнергии в однофазных цепях переменного тока и организации ее учета по четырем тарифам с передачей накопленной информации через цифровой интерфейс, оптопорт. Использование в составе автоматизированных информационно-измерительных систем коммерческого учета электроэнергии (АИИС КУЭ).

CE201

область применения

В бытовом секторе, на предприятиях мелкомоторного производства и сферы обслуживания.


отличительные особенности

- Индикация небаланса токов в цепях фазного и нулевого проводов.
- Учет энергии по каналу с большим током.
- Измерение параметров сети (мощность, напряжение, ток, коэффициент мощности, частота сети).
- Температурная коррекция хода ча-
- Оптический порт, интерфейс RS485.
- PLC-модем, радиомодем, GSM/GPRS-модем.
- ЖК-индикатор с подсветкой.
- Резервный источник питания.
- Реле сигнализации (1 A, 230 B с фиксацией состояния).
- Измерение профилей нагрузки.

основные технические характеристики

Класс точности	1
Число тарифов	4
Частота измерительной сети, Гц	50±2,5
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5(60); 10(100)
Стартовый ток (чувствительность), мА	10; 20
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	3 (0,8)
Полная потребляемая мощность последовательной цепи, не более В • А	0,05
Диапазон рабочих температур, °С	от -45 до +70

структура условного обозначения

базовые исполнения

CE201 S7 145-JAVZ	CE201 S7 145-JGQ2VZ
CE201 S7 145-JGVZ	CE201.1 S7 145-JGQ2VZ
CE201.1 S7 145-JAVZ	CE201.1 S7 145-JGVZ

Счетчик обеспечивает учет и вывод на ЖК-индикатор:

- количества потребленной активной электроэнергии нарастающим итогом суммарно и по 4 тарифам;
- количества потребленной активной электроэнергии суммарно и по 4 тарифам за текущий месяц и 12 предыдущих месяцев (с указанием даты);
- количества потребленной активной электроэнергии суммарно и по 4 тарифам за текущие сутки и 44 предыдущих суток (с указанием даты);
- максимумов нагрузки по 4 тарифам за текущий месяц и 12 предыдущих месяцев (с указанием даты/времени).

Счетчик выводит на ЖК-индикатор:

- текущие дату/время и день недели, текущий тариф, тарифное расписание текущих суток;
- заводской номер счетчика, начальную скорость обмена, значение периода усреднения;
- параметры сети и прогнозируемую к концу периода усреднения мощность;
- значения лимитов мощности и месячного потребления;
- сигнализацию превышения лимитов мощности и месячного потребления;
- отклонение напряжения за заданные пределы;
- сигнатуру датчика вскрытия крышки зажимов (после срабатывания датчика сигнатура равна нулю);
- сигнализацию нештатных ситуаций в токовых цепях (обратный поток энергии, небаланс токов).

Счетчик обеспечивает возможность задания по интерфейсу следующих параметров:

- текущих даты/времени;
- месяцев перехода на «летнее» время;
- тарифного расписания (до 12 сезонных программ с заданием отдельной суточной программы на каждый день недели, до 36 суточных программ, до 12 тарифных зон в суточной программе, до 32 исключительных дней);
- лимитов по мощности и месячному потреблению отдельно по тарифам;
- пароля доступа по интерфейсу (до 8 символов);
- идентификатора в соответствии с протоколом обмена (до 21 символа);
- рабочей скорости обмена по интерфейсу (300, 600, 1200, 2400, 4800, 9600, 19200, 38400 бод):
- критерия включения реле управления (по действующему тарифу, по превышению лимита потребления или лимита мощности, по отклонению напряжения от заданных пределов, управления по интерфейсу и др.);

- задание границ рабочего диапазона напряжения (для фиксации и сигнализации выхода за пределы диапазона);
- режимов вывода на ЖКИ и обмена по интерфейсу;
- постоянной коррекции хода часов;
- длительности периода усреднения мощности нагрузки (3, 5, 10, 15, 30, 60 минут).

Счетчик обеспечивает:

- автоматический переход встроенных часов на «зимнее»/«летнее» время (с заданием месяца/часа каждого перехода);
- возможность коррекции времени вручную или по интерфейсу несколько раз в сутки (суточный лимит 30 секунд);
- ведение профилей мощности нагрузки (глубина хранения для времени интегрирования 30 минут 48 суток);
- защиту доступа к изменению параметров счетчика с помощью пломбируемой кнопки, пароля, криптографического алгоритма доступа (пароль не передается в открытом виде);
- возможность получения по интерфейсу минимального фиксированного набора данных по одному запросу (заводской номер и слово состояния счетчика, время/дата, накопления нарастающим итогом по тарифам и суммарно, тарифное расписание текущих суток);
- защищенное обнуление накопленных данных (энергии, максимумы мощности, профили мощности нагрузки);
- фиксацию факта несанкционированного вскрытия крышки зажимов;
- фиксацию в журнале 60 последних изменений фазного напряжения (выходы за указанные пределы, включение/выключение счетчика);
- фиксацию в журнале 60 последних изменений состояния токовых цепей (обратный поток энергии, небаланс токовых цепей);
- фиксацию в журнале 60 последних изменений параметров счетчика (времени, тарифного расписания, параметров протокола обмена и др.);
- фиксацию в регистраторах изменений метрологических параметров, попытки несанкционированного доступа, включение/выключение реле управления по интерфейсной команде, величину коррекции времени в секундах, обнуление накопленных данных, установку сигнатуры датчика вскрытия крышки зажимов, срабатывание датчика вскрытия крышки зажимов;
- отображение на ЖК-индикаторе основных данных с заданной периодичностью (3...60 секунд) или просмотр данных с помощью кнопки на передней панели.

Счетчик производит диагностику памяти программ, памяти данных, часов реального времени, литиевого элемента, выдает информацию об ошибках и сбоях в работе узлов на ЖК-индикатор и по интерфейсу, а также формирует обобщенный сигнал самодиагностики.

характеристики надежности

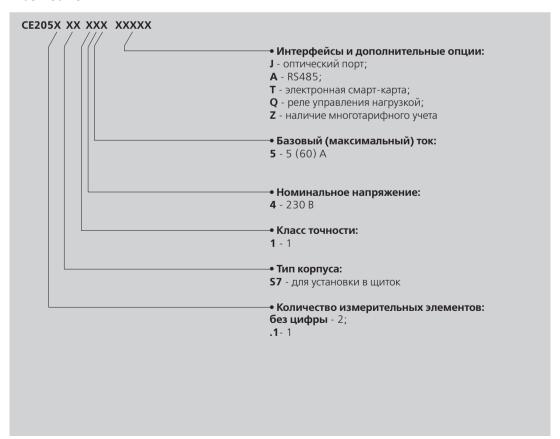
- Средняя работа до отказа не менее 220000 часов.
- Межповерочный интервал 16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 5 лет.

нормативно-правовое обеспечение

FOCT P 52320-2005 (M9K62052-11:2003) FOCT P 52322-2005 (M9K62053-21:2003)

Счетчик предназначен для измерения активной электрической энергии в однофазных двухпроводных цепях переменного тока и организации многотарифного учета с предварительной оплатой электроэнергии.

CE205


основные технические характеристики

Класс точности	1
Число тарифов	до 4
Частота измерительной сети, Гц	(50±2,5); (60±3)
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5(60)
Полная (активная) потребляемая мощность параллельной цепи, не более, В А (Вт)	3(0,8)
Полная потребляемая мощность последовательной цепи, не более, В [*] А	0,1
Диапазон рабочих температур, °C	от -40 до +70

область применения

В бытовом секторе, на предприятиях мелкомоторного производства и сферы обслуживания.

структура условного обозначения

- Счетчик обеспечивает учет и вывод на индикацию:
- количества потребленной активной энергии раздельно и нарастающим итогом суммарно по четырем тарифам;
- суммы электроэнергии за текущий и 2 предыдущих месяца;
- количества электроэнергии, оплаченное в последнем сеансе покупки;
- количества проведенных сеансов покупки электроэнергии.
- Счетчик измеряет и показывает:
- текущее значение напряжения;
- текущее значение тока;
- текущее значение мощности нагрузки.
- Предусмотрена возможность задания следующих параметров:
- текущего значения времени и даты;
- разрешения перехода на «зимнее», «летнее» время (с заданием даты и времени перехода);
- лимитов по потреблению и мощности.
- Счетчик обеспечивает контроль баланса оплаченной электроэнергии и автоматическое отключение потребителя при использовании им полного объема приобретенной электроэнергии.

отличительные особенности

- Электронная пломба.
- Оптический интерфейс.
- Интерфейс RS485.
- Встроенный картоприемник для электронных смарт-карт.
- Встроенное реле управления нагрузкой.
- Малое собственное энергопотребление.
- Сигнализация о том, что остаток оплаченной электроэнергии меньше установленного лимита.

- Защита памяти данных и памяти программ от несанкционированных изменений
- Устойчивость к климатическим, механическим и электромагнитным возлействиям
- Обеспечивает возможность погашения кредита по потребленной электроэнергии в срок до 6 месяцев.

счетчик обеспечивает

- Точность хода встроенных часов 0,5 сек/сутки.
- Учет по 4 тарифам с учетом в тарифном расписании:
- до 2 временных зон года;
- до 2 таблиц суточного графика тарификации;
- до 12 временных зон для каждой из таблиц суточного графика тарификации;
- до 50 особых дат.
- Длительность хранения информации при отключении питания не менее 30 лет.
- Индикацию данных на ЖК-индикаторе с заданной периодичностью 5 сек или пролистывание с помощью элементов управления (кнопки) на лицевой панели.
- Отключение потребителя по факту превышения установленного лимита по мощности.
- Защиту от внешних воздействий:
- при наличии постоянной составляющей в сети;
- при воздействии переменного магнитного поля;
- при воздействии постоянного магнитного поля 500 мТ.

характеристики надежности

- Минимальная наработка на отказ 220 000 часов.
- Средний срок службы 30 лет.
- Межповерочный интервал 16 лет.
- Гарантийный срок (срок хранения и срок эксплуатации суммарно) 5 лет с даты выпуска.

нормативно-правовое обеспечение

- Соответствует ГОСТ Р 52320-2005.
- Соответствует ГОСТ Р 52322-2005.
- Сертифицирован и внесен в Государственный реестр средств измерений РФ.

Счетчик предназначен для измерения активной и реактивной энергии в однофазных цепях переменного тока, организации многотарифного учета электроэнергии. Конструктивно счетчики разделены на две части: измерительный блок и индикаторное устройство. Измерительные блоки выполняют всю функциональность многотарифного счетчика, устанавливаются без дополнительной защиты от влияния окружающей среды вблизи опоры линии электропередачи на отводящих к потребителю силовых проводах. Также измерительные блоки осуществляют передачу информационных данных по радиоинтерфейсу для автоматизированных информационно-измерительных систем коммерческого учета электроэнергии АИИС КУЭ (АСКУЭ). Индикаторное устройство выполняет функции индикации показаний.

CE208

основные технические характеристики

Класс точности:	
активная	1
реактивная	2
Число тарифов	до 4
Частота измерительной сети, Гц	50±2,5
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5(80)
Диапазон рабочих температур, °С	от −40 до +70
Класс защиты:	
Измерительный блок	IP64
Индикаторный блок	IP51

область применения

В бытовом секторе, на предприятиях мелкомоторного производства и сферы обслуживания.

структура условного обозначения

базовые исполнения

CE208 C2 849 JRP QZ

- Измерение активной и реактивной энергии в однофазных цепях переменного тока в прямом направлении.
- Счетчик ведет учет по четырем тарифам.
- Счетчик позволяет задать до 8 различных суточных расписаний переключений тарифов и до 8 сезонных программ.
- Счетчик позволяет задать до 20 исключительных дней (праздничных и перенесенных), тарификация в которых отличается от тарификации, принятой в сезонной программе.
- Счетчик ведет архивы тарифицированной (до 4 тарифов) и суммарной учтенной активной энергии.
- Хранение графиков нагрузки 30 (60) мин. в течение 93 (186) суток.
- Два измерительных элемента по фазной и нулевой цепям.
- Встроенное реле управления нагрузкой на 80 А.
- Контроль лимитов потребления с возможностью отключения встроенного реле при превышении.
- Встроенные модули связи PLC и RF для обмена с индикаторным устройством и использования в составе системы учета.
- Возможность использования для локального учета и в системе АИИС КУЭ.

отличительные особенности

Индикаторное устройство:

- Индикаторное устройство снабжено шнуром с вилкой для включения в сеть при необходимости просмотра информации потребителем.
- Индикаторное устройство поставляется в комплекте счетчика СЕ208 и выполняет следующие функции:
- Автоматическое считывание информации с измерительного блока счетчика по РLС-связи;
- Отображение информации на ЖКИ.

Характеристики радиосвязи:

Радиосвязь используется для съема показаний со счетчика СЕ208 в составе системы АИИС КУЭ.

Характеристики радиоканала:

- Частота сети: 433 МГц.
- Выходная мощность: 10 мВт.
- Организация сети: Самоорганизующаяся Mesh-сеть.
- Количество устройств в сети: 1024.
- Количество уровней ретрансляции: 10.

характеристики надежности

- Минимальная наработка на отказ 220000 часов.
- Межповерочный интервал 16 лет.
- Гарантийный срок (срок хранения и срок эксплуатации суммарно) 5 лет с даты выпуска.

нормативно-правовое обеспечение

Соответствует ГОСТ Р 52320-2005 Соответствует ГОСТ Р 52322-2005

Сертифицирован и внесен в Государственный реестр средств измерений РФ

счётчики электроэнергии трёхфазные

Однотарифные

Предназначены для учета активной электроэнергии по одному тарифу в трехфазных трехпроводных или четырехпроводных цепях переменного тока непосредственно или через трансформаторы тока.

ЦЭ6803В

область применения

В производственном секторе: на промышленных предприятиях, на предприятиях среднего и малого бизнеса, торговых предприятиях.

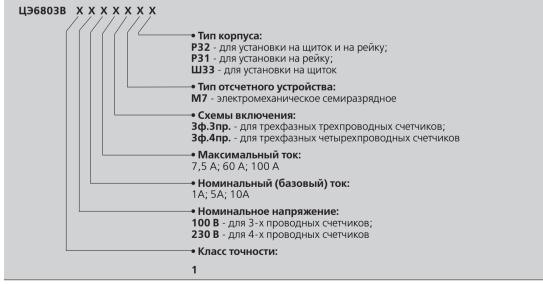
В коммунальном секторе: в жилых и общественных зданиях, мобильных сооружениях, коттеджах, дачах, гаражах.

отличительные особенности

- Высокая чувствительность по току нагрузки.
- Малое собственное энергопотребление.
- Стандартный телеметрический импульсный выход.
- Световой индикатор работы.
- Защита от недоучета и хищения электроэнергии.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.

основные технические характеристики

Класс точности	1
Число тарифов	1
Частота измерительной сети, Гц	50±2,5; 60±3
Номинальное фазное напряжение, В	100; 230
Базовый (максимальный) ток, А: счетчиков непосредственного включения	5(60); 10(100)
Номинальный (максимальный) ток, А: счетчиков трансформаторного включения	1(7,5); 5(7,5)
Стартовый ток (чувствительность), мА	20, 40
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт): непосредственного включения	9(1)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Диапазон рабочих температур, °С	от -40 до +70


характеристики надежности

- Средняя работа до отказа не менее 220000 часов.
- Межповерочный интервал –16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 4 года.

нормативно-правовое обеспечение

- FOCT P 52320-2005 (MЭK62052-11:2003)
- FOCT P 52322-2005 (M9K62053-21:2003)

структура условного обозначения

базовые исполнения

ЦЭ6803В 1 100В 5-7,5А 3ф.3пр. М7 Р32	ЦЭ6803B 1 230B 10-100A 3ф.4пр. M7 P32
ЦЭ6803В 1 230В 1-7,5А 3ф.4пр. М7 Р32	ЦЭ6803B 1 230B 5-60A 3ф.4пр. M7 P32
ЦЭ6803В 1 230В 10-100А 3ф.4пр. М7 РЗ1	ЦЭ6803B 1 230B 1-7,5A 3ф. 4пр. M7 P31
ЦЭ6803B 1 230B 5-60A 3ф.4пр. M7 P31	
ЦЭ6803В 1 230В 5-60А 3ф.4пр. М7 ШЗЗ	ЦЭ6803B 1 230B 10-100A 3ф.4пр. M7 Ш33
1126902P 1 220P 1_7 EA 24 /mp M7 11122	

Однотарифные

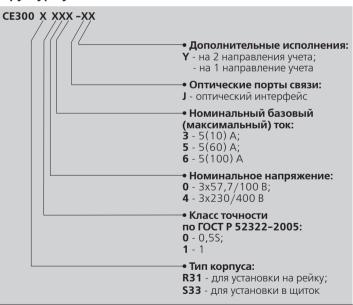
Предназначены для измерения и учета активной электроэнергии в трехфазных цепях переменного тока, непосредственно или через трансформаторы тока в одном или двух направлениях.

CE300

область применения

В производственном секторе: на крупных промышленных объектах, предприятиях среднего и малого бизнеса, торговых предприятиях.

В коммунальном секторе: в жилых и общественных зданиях, коттеджах, дачах, гаражах.


отличительные особенности

- Стандартный оптический телеметрический импульсный выход.
- Наличие оптического интерфейса.
- Малое собственное энергопотребление.
- Высокая чувствительность по току нагрузки.
- Защита от недоучета и хищений электроэнергии.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.

основные технические характеристики

Класс точности	0,5S; 1
Число тарифов	1
Частота измерительной сети, Гц	50±2,5; 60±3
Номинальное напряжение, В	3x57,7/100; 3x230/400
Базовый (максимальный) ток, А	5(10); 5(60); 5(100)
Стартовый ток (чувствительность), мА	5; 10; 20
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	9(0,8)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт • ч	450; 800; 4000; 8000
	от -40 до +60

структура условного обозначения

базовые исполнения

CE300 R31 043-J	CE300 R31 146-J
CE300 R31 145-J	

CE300 S33 003-J	CE300 S33 145-J
CE300 S33 003-JY	CE300 S33 146-J
CE300 S33 043-J	

Габаритные размеры см. в приложении Б.

характеристики надежности

- Средняя работа до отказа не менее 160000 часов.
- Межповерочный интервал 16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 4 года.

нормативно-правовое обеспечение

ГОСТ Р 52320-2005 (МЭК62052-11:2003)

ΓΟCT P 52322-2005

(MЭK62053-21:2003)

FOCT P 52323-2005 (M9K62053-22:2003)

Однотарифные

Предназначены для измерения активной и реактивной электроэнергии в трехфазных цепях переменного тока, непосредственно или через трансформаторы тока в одном или двух направлениях.

CE302

отличительные особенности

- Световой индикатор работы.
- Два направления учета.
- Наличие оптического интерфей-
- Малое собственное энергопотребление.
- Высокая чувствительность по току нагрузки.
- Защита от недоучета и хищений электроэнергии.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.

область применения

На предприятиях электроэнергетики, крупных промышленных объектах, предприятиях среднего и малого бизнеса, торговых предприятиях.

основные технические характеристики

Класс точности	0,5S/0,5; 1/1
Число тарифов	1
Частота измерительной сети, Гц	50±2,5; 60±3
Номинальное напряжение, В	3x57,7/100; 3x230/400
Базовый (максимальный) ток, А	5(10); 5(60); 5(100)
Стартовый ток (чувствительность), мА	5; 10; 20
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	9(0,8)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт • ч	450; 800; 4000; 8000
Диапазон рабочих температур счетчиков, °С	от -40 до +60

структура условного обозначения

характеристики надежности

- Средняя работа до отказа не менее 160000 часов.
- Межповерочный интервал –16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 4 года.

нормативно-правовое обеспечение

ΓΟCT P 52320-2005 (MЭK62052-11:2003)

ΓΟCT P 52322-2005 (MЭK62053-21:2003)

ГОСТ Р 52323-2005 (МЭК62053-22:2003)

ΓΟCT P 52425-2005 (M∋K62053-22:2003)

базовые исполнения

CE302 R31 543-J	CE302 R31 746-J
CE302 R31 745-J	
CE302 S33 503-J	CE302 S33 745-J
CE302 S33 503-JY	CE302 S33 746-J
CE302 S33 543-J	

Счетчик предназначен для измерения активной электрической энергии в трехфазных четырехпроводных цепях переменного тока и организации многотарифного учета с предварительной оплатой электроэнергии.

CE305

основные технические характеристики

Класс точности	1
Число тарифов	до 4
Частота измерительной сети, Гц	(50±2,5);(60±3
Номинальное напряжение, В	230
Базовый (максимальный) ток, А	5 (60); 5 (100)
Диапазон рабочих температур, °C	от -40 до +70
Габаритные размеры, не более, мм	173 x 89 x 227,5

нормативно-правовое обеспечение

Соответствует ГОСТ Р 52320-2005. Соответствует ГОСТ Р 52322-2005. Соответствует ГОСТ Р 52323-2005.

Сертифицирован и внесен в Государственный реестр средств измерений РФ.

характеристики надежности

- Минимальная наработка на отказ 220 000 часов.
- Средний срок службы 30 лет.
- Межповерочный интервал 16 лет.
- Гарантийный срок (срок хранения и срок эксплуатации суммарно) 3 года с даты выпуска.

функциональные возможности

Счетчик обеспечивает учет и вывод на индикацию:

- Количества потребленной активной энергии раздельно и нарастающим итогом суммарно по четырем тарифам.
- Суммы электроэнергии за текущий и 2 предыдущих месяца.
- Количества электроэнергии, оплаченного в последнем сеансе покупки.
- Количества проведенных сеансов покупки электроэнергии.

Счетчик измеряет и показывает:

- Текущее значение напряжения по фазам.
- Текущее значение тока по фазам.
- Текущее значение мощности нагрузки по фазам.

Предусмотрена возможность задания следующих параметров:

- Текущего значения времени и даты;
- Разрешения перехода на «зимнее», «летнее» время (с заданием даты и времени перехода);
- Лимитов по потреблению и мощности.
- Счетчик обеспечивает контроль баланса оплаченной электроэнергии и автоматическое отключение потребителя при использовании им полного объема приобретенной электроэнергии.

отличительные особенности

- Электронная пломба.
- Оптический интерфейс.
- Интерфейс RS485.
- Встроенный картоприемник для электронных смарт-карт.
- Встроенное реле управления нагрузкой.
- Малое собственное энергопотребление.
- Сигнализация о том, что остаток оплаченной электроэнергии меньше установленного лимита.
- Защита памяти данных и памяти программ от несанкционированных изменений.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.
- Обеспечивает возможность погашения кредита по потребленной электроэнергии в срок до 6 месяцев.

счетчик обеспечивает

• Точность хода встроенных часов 0,5 сек/сутки.

структура условного обозначения

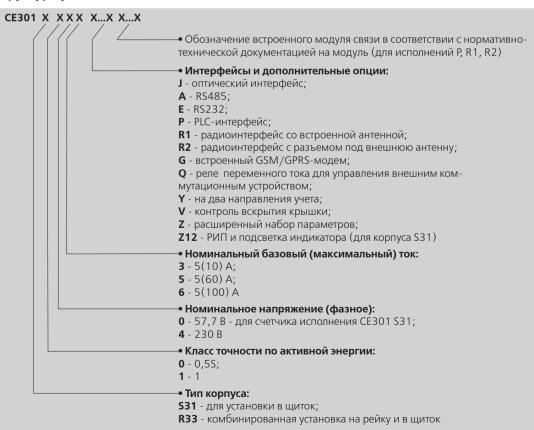
- Учет по 4 тарифам с учетом в тарифном расписании:
- до 2 временных зон года;
- до 2 таблиц суточного графика тарификации;
- до 12 временных зон для каждой из таблиц суточного графика тарификации;
- до 50 особых дат.
- Длительность хранения информации при отключении питания не менее 30 лет
- Индикацию данных на ЖК-индикаторе с заданной периодичностью 5 сек или пролистывание с помощью элементов управления (кнопки) на лицевой панели.
- Отключение потребителя по факту превышения установленного лимита по мощности.
- Защиту от внешних воздействий:
- при наличии постоянной составляющей в сети;
- при воздействии переменного магнитного поля;
- при воздействии постоянного магнитного поля 500 мТ.

Предназначены для измерения и многотарифного учета активной электрической энергии в трехфазных цепях переменного тока в одном или двух направлениях.

CE301

область применения

На розничном рынке электроэнергии, на предприятиях коммунальной энергетики, в промышленном мелкомоторном и бытовом секторах, на объектах социального значения.


отличительные особенности

- Электронная пломба для счетчика в корпусе S31.
- Наличие оптического интерфейса.
- Реле переменного тока для управления внешним коммутационным устройством.
- Сигнализация превышения лимитов.
- Малое собственное энергопотребление.
- Интерфейс RS485. Устойчивость к климатическим, механическим и электромагнитным воздействиям.
- Наличие модификаций с PLCи радиоинтерфейсами и модификации (в корпусе S31) со встроенным GSM/GPRS-модемом.
- Наличие модификаций с резервным источником питания и подсветкой индикатора.

основные технические характеристики

Класс точности	0,5S; 1
Число тарифов	4
Частота измерительной сети, Гц	50±2,5
Номинальное фазное напряжение, В	57,7; 230
Базовый (максимальный) ток, А: счетчиков непосредственного включения	5(60); 5(100)
Номинальный (максимальный) ток, А: счетчиков трансформаторного включения	5(10)
Стартовый ток (чувствительность), мА	5; 10
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	9(0,8)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт•ч	450; 800; 4000; 8000
Диапазон рабочих температур, °С	от -40 до +60

структура условного обозначения

Счетчик обеспечивает учет и вывод на индикацию:

- количества потребленной активной электроэнергии нарастающим итогом суммарно и раздельно по 4 тарифам на конец месяца и за 13 предыдущих месяцев:
- количества потребленной активной электроэнергии нарастающим итогом суммарно и раздельно по 4 тарифам на конец суток за 45 суток;
- значений активной мощности, усредненных за прошедший
- 3-минутный интервал;
- максимальных значений активной мощности, усредненных на 30-минутном интервале за текущий и за 12 прошедших месяцев раздельно по 4 тарифам. Счетчик формирует графики активных мошностей (потребления), усреднен-

Счетчик формирует графики активных мощностей (потребления), усредненных на заданном интервале времени (от 1 до 60 мин.). Глубина хранения 60-минутных профилей нагрузок – до 145 суток.

CE301 R33 145-JAZ

CE301 R33 146-JAQZ

Счетчик измеряет и показывает:

- среднеквадратические значения фазных напряжений и токов;
- частоту сети;
- активную мощность.

CE301 R33 043-JAQZ

CE301 R33 043-JAZ

CE301 S31 043-JPVZ(12)

базовые исполнения

CE301 R33 145-JAQZ	CE301 R33 146-JAZ	
CE301 S31 003-JAQVZ	CE301 S31 145-JAVZ(12)	
CE301 S31 003-JAQVZ(12)	CE301 S31 145-JPQVZ	
CE301 S31 003-JAVZ	CE301 S31 145-JPVZ	
CE301 S31 003-JAVZ(12)	CE301 S31 145-JPVZ(12)	
CE301 S31 003-JAYVZ	CE301 S31 146-JAQVZ	
CE301 S31 003-JAYVZ(12)	CE301 S31 146-JAVZ	
CE301 S31 043-JAQVZ	CE301 S31 146-JAVZ(12)	
CE301 S31 043-JAQVZ(12)	CE301 S31 146-JPQVZ	
CE301 S31 043-JAVZ	CE301 S31 146-JPVZ	
CE301 S31 043-JAVZ(12)	CE301 S31 146-JPVZ(12)	
CE301 S31 043-JPVZ	CE301 S31 145-JAQVZ	

CE301 S31 145-JAVZ

Счетчик обеспечивает возможность задания следующих параметров:

- заводского номера счетчика;
- текущего времени и даты;
- разрешения перехода на «зимнее» и «летнее» время (с заданием месяцев перехода);
- до 12 дат начала сезона;
- до 12 зон суточного графика тарификации и до 36 графиков тарификации;
- до 32 исключительных дней (дни, в которые тарификация отличается от общего правила и задается пользователем);
- коэффициентов трансформации тока и напряжения;
- лимитов по потребленной мощности с процентом превышения для работы сигнализации по каждому тарифу.

Счетчик обеспечивает:

- возможность ручной коррекции хода часов \pm 30 сек. Один раз в сутки. Точность хода встроенных часов 0,5 сек/сутки;
- сохранение накопленных показаний, ход часов и ведение календаря не менее 10 лет при отсутствии внешнего питающего напряжения;
- фиксацию 20 последних корректировок времени, изменение установок временных тарифных зон и перепрограммирование метрологических характеристик счетчика;
- фиксацию 100 последних пропаданий фазных напряжений и их выходов за пределы допустимых значений;
- фиксацию 20 последних отрицательных результатов самодиагностики счетчика и вскрытия электронных пломб;
- точность измерений при изменении направления тока в фазной токовой цепи;
- возможность управления нагрузкой с использованием внешнего коммутационного аппарата по команде диспетчера с индикацией режима отключения;
- защиту памяти данных и памяти программ от несанкционированных изменений с помощью кнопок или по интерфейсу (2 пароля для 2 уровней доступа, аппаратное разрешение кнопка или другое устройство, электронная пломба с фиксацией в журнале событий);
- индикацию данных на ЖК-индикаторе с заданной периодичностью (Т-5 сек) или пролистывание с помощью кнопки на лицевой панели;
- питание как от фазного напряжения (наличие 1 фазы), так и от линейного (обрыв нуля);
- возможность автоматической калибровки и поверки всех измеряемых и учитываемых параметров с использованием цифровых интерфейсов;
- приведение всех данных по энергии и мощности к первичным значениям с учетом коэффициентов измерительных трансформаторов;
- сигнализацию о превышении лимитов по мощности.

характеристики надежности

- Средняя работа до отказа не менее 220000 часов.
- Межповерочный интервал для счетчика в корпусе R33 –10 лет.
- Межповерочный интервал для счетчика в корпусе S31 –16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 4 года.

нормативно-правовое обеспечение

FOCT P 52320-2005 (M9K62052-11:2003) FOCT P 52322-2005 (M9K62053-21:2003)

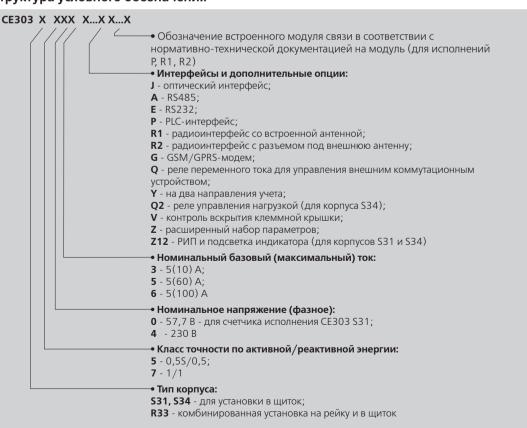
Предназначены для измерения и учета активной и реактивной электрической энергии в одном или двух направлениях в трехфазных цепях переменного тока, измерения активной, реактивной и полной мощности, коэффициента мощности, среднеквадратического значения напряжения и силы тока по трем фазам в трехфазных цепях переменного тока.

CE303

область применения

На розничном рынке электроэнергии, на предприятиях коммунальной энергетики, в промышленном мелкомоторном и бытовом секторах, на объектах социального значения.

отличительные особенности


- Электронная пломба.
- Наличие оптического интерфейса.
- Реле управления нагрузкой или реле переменного тока для управления внешним коммутационным устройством.
- Малое собственное энергопотребление.
- Сигнализация об отклонении от лимитов по мощности и потреблению.
- Интерфейс RS485.
- Защита памяти данных и памяти программ от несанкционированных изменений.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.
- Модификации с PLC и радиоинтерфейсами.
- Модификации с GSM/GPRS-модемом.

основные технические характеристики

Класс точности	0,5\$/0,5; 1/1
- Число тарифов	4
Частота измерительной сети, Гц	50±2,5
Номинальное фазное напряжение, В	57,7; 230
Базовый (максимальный) ток, А: счетчиков непосредственного включения	5(60); 5 (100)
Номинальный (максимальный) ток, А: счетчиков трансформаторного включения	5 (10)
Стартовый ток (чувствительность), мА	5;10
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	9 (0,8)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт•ч	450; 800; 4000; 8000
Диапазон рабочих температур, °С	от -40 до +60

структура условного обозначения

Счетчик обеспечивает учет и вывод на индикацию:

- количества потребленной и отпущенной активной и реактивной энергии раздельно и нарастающим итогом суммарно по четырем тарифам на конец месяца и за 13 предыдущих месяцев;
- графиков активных и реактивных мощностей потребления, усредненных на заданном интервале времени (60 минут) до 145 суток; значение активной и реактивной мощности, усредненное за прошедший трехминутный интервал;
- количества потребленной активной и реактивной электроэнергии нарастающим итогом суммарно и раздельно по 4 тарифам на конец суток и за предыдущие 45 суток;
- действующего тарифа и направления электроэнергии (отпуск, потребление);
- максимального значения активной и реактивной мощности, усредненной на 30-минутном интервале, за текущий и прошедшие 12 месяцев раздельно по четырем тарифам.

CE303 R33 746-JAQZ

базовые исполнения

CE303 R33 543-JAQZ

CE303 R33 746-JAZ
CE303 S31 745-JAVZ
CE303 S31 745-JAVZ(12)
CE303 S31 745-JPVZ
CE303 S31 745-JPVZ(12)
CE303 S31 746-JAQVZ
CE303 S31 746-JAVZ
CE303 S31 746-JAVZ(12)
CE303 S31 746-JPVZ
CE303 S31 746-JPVZ(12)
CE303 S31 543 JR1VZ CE831M01.03
CE303 S31 745 JR1QVZ CE831M01.03
CE303 S31 745 JR1QVZ CE831M01.03

	• • • • • • • • • • • • • • • • • • • •
CE303 S34 745-JPQ2VZ	CE303 S34 745 JR1Q2VZ CE831M01.03
CE303 S34 745-JPQ2VZ(12)	CE303 S34 745 JR2Q2VZ CE831M02.03

CE303 S34 745 JR102VZ c CE 901 RU

характеристики надежности

CF303 S34 745-IAO2V7(12)

- Средняя работа до отказа не менее 220000 часов.
- Межповерочный интервал для счетчика в корпусе R33 –10 лет.
- Межповерочный интервал для счетчика в корпусах S31и S34 –16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 4 года.

Счетчик измеряет и показывает:

- среднеквадратические значения фазных напряжений и токов;
- частоту сети;
- активную и реактивную мощность.

Предусмотрена возможность задания следующих параметров:

- заводского номера счетчика;
- текущего времени и даты;
- разрешения перехода на «летнее» время (с заданием месяцев перехода на «зимнее», «летнее» время);
- до 12 дат начала сезона;
- до 12 зон суточного графика тарификации и до 36-ти графиков тарификации;
- до 32 исключительных дней (дни, в которых тарификация отличается от общего правила и задается пользователем);
- коэффициентов трансформации тока и напряжения;
- лимитов по потреблению и мощности с процентом превышения для работы сигнализации по каждому тарифу.

Счетчик обеспечивает:

- Возможность ручной коррекции хода часов ± 30 сек/сут. один раз в сутки. Точность хода встроенных часов 0,5 сек/сут.
- Длительность хранения информации при отключении питания не менее 10 лет.
- Фиксацию 20 последних корректировок времени, изменения установок времени тарифных зон и перепрограммирования метрологических характеристик счетчика.
- Фиксацию 100 последних пропаданий и выходов за пределы допустимых значений фазных напряжений.
- Индикацию данных на ЖК-индикаторе с заданной периодичностью (T=5 сек) или пролистывание с помощью элементов управления (кнопки) на лицевой панели.
- Управление нагрузкой с использованием внешнего коммутационного аппарата по команде диспетчера с индикацией режима отключения.
- Сигнализацию отклонения от лимитов по мощности и потреблению, фиксацию максимального значения мощности для каждого тарифа в течение месяца (интервал усреднения – 30 минут) и контроль превышения лимита для выдачи счетчиком команды на срабатывание внешнего реле сигнализации.
- Защиту от внешних воздействий:
- при наличии постоянной составляющей в сети;
- при воздействии переменного магнитного поля;
- при воздействии постоянного магнитного поля 200 мТ;
- при изменении направления тока в фазах (вход-выход счетчика).
- Обеспечение питания как от фазного напряжения (наличие 1 фазы), так и от линейного (обрыв нуля).
- Автоматическую калибровку и поверку всех измеряемых и учитываемых параметров с использованием цифровых интерфейсов.
- Предусмотрена защита памяти данных и памяти программ от несанкционированных изменений с помощью кнопок или по интерфейсу (два пароля для двух уровней доступа, аппаратное разрешение кнопка или другое устройство, электронная пломба с фиксацией в журнале событий).

нормативно-правовое обеспечение

ГОСТ Р 52320-2005 (МЭК 62052-11:2003)

ГОСТ Р 52322-2005 (МЭК 62053-21:2003)

ГОСТ Р 52323-2005 (МЭК 62053-22:2003)

ГОСТ Р 52425-2005 (МЭК 62053-22:2003)

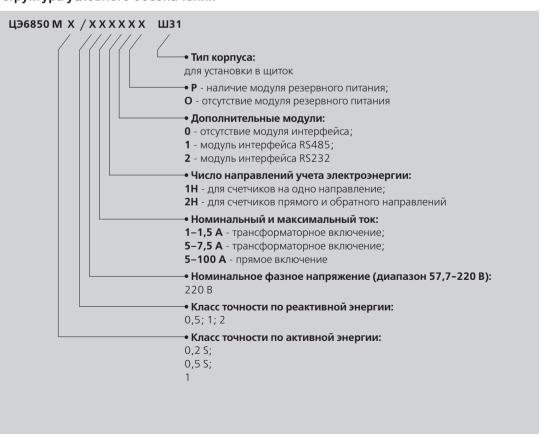
Микропроцессорные многофункциональные

Предназначены для измерения и учета активной и реактивной электрической энергии, активной, реактивной и полной мощности, энергии потерь, частоты напряжения, угла сдвига фаз, среднеквадратического значения напряжения и силы в трехпроводных, четырехпроводных цепях переменного тока и организации многотарифного учета электроэнергии в одном или двух направлениях.

ЦЭ6850М

отличительные особенности

- Расширенный диапазон по напряжению: 0,2 1,15 Uном (счетчик может эксплуатироваться в сетях переменного напряжения 57.7; 127 и 220 В).
- Технологический запас по точности измерений.
- Высокая достоверность учета электроэнергии и мощности при наличии нарушений качества питающей сети (несимметрия и несинусоидальность напряжений и токов нагрузки по ГОСТ 13109-97); счетчик обеспечивает достоверный учет до 45 гармоник сети.
- Обеспечение учета потерь в ЛЭП (W=I2Rt).
- Автоматическая самодиагностика с выдачей результата.
- Защита от недоучета и хищений электроэнергии.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.
- 4 профиля хранения данных с различными интервалами измерений.


область применения

Измерение параметров сети. Использование в составе автоматизированных систем технического и коммерческого учета. Учет потоков электроэнергии в энергосистемах на промышленных предприятиях. Технический и коммерческий учет межсистемных и сетевых перетоков, выработки и потребления электроэнергии.

основные технические характеристики

Класс точности	0,2\$/0,5; 0,5\$/1;1/2
Число тарифов	4
Частота измерительной сети, Гц	50±2,5
Номинальное фазное напряжение, В	57,7; 220
Базовый (максимальный) ток, А: счетчиков непосредственного включения	1(1,5); 5(7,5); 5(100)
Стартовый ток (чувствительность), мА	1; 5; 20
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	4(1,5)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт•ч	от 800 до 50 000
Диапазон рабочих температур, °С	от −40 до +60

структура условного обозначения

Счетчик обеспечивает учет и вывод на индикацию:

- количества активной и реактивной электроэнергии в двух направлениях нарастающим итогом суммарно и раздельно по 4 тарифам;
- количества активной и реактивной электроэнергии в двух направлениях помесячно за текущие 24 прошедших месяца раздельно по 4 тарифам;
- количества активной и реактивной электроэнергии за текущие и трое прошедших суток раздельно по 4 тарифам;
- графиков активных мощностей. Глубина хранения графиков активных мощностей, усредненных на 60-минутном интервале – до 256 суток;
- значений активной мощности, усредненных за прошедший 3-минутный интервал;
- максимального значения активной и реактивной мощности, усредненного на 30-минутном интервале, за 24 прошедших месяца раздельно по 4 тарифам;
- действующего тарифа и направления электроэнергии (потребление, отпуск);
- удельной энергии потерь в цепях тока нарастающим итогом для каждого направления электроэнергии.

Дополнительно счетчик обеспечивает измерение и индикацию:

- среднеквадратических значений фазных напряжений по каждой фазе в цепях напряжения;
- среднеквадратических значений токов по каждой фазе в цепях тока;
- активной, реактивной и полной мощности по каждой из фаз и суммарно;
- углов сдвига фазы между основными гармониками фазных напряжений и токов;
- значений коэффициентов активной и реактивной мощности (с ненормируемой точностью);
- значений частоты сети.

Счетчик обеспечивает задание следующих параметров:

- текущего времени и даты; величины ежесуточной автокоррекции хода встроенных часов;
- величины ежесуточной автокоррекции хода встроенных часов;

- разрешения перехода на «зимнее» и «летнее» время
- (с заданием месяцев перехода); • до 12 сезонных программ;
- до 36 графиков суточной тарификации (количество тарифных зон до 12, количество тарифов – до 4);
- до 32 исключительных дней (дни, в которые тарификация отличается от общего правила и задается пользователем);
- графиков тарификации для каждого из семи дней недели;
- коэффициентов трансформации тока и напряжения;
- пароля для доступа по интерфейсу (до 8 символов);
- идентификатора счетчика (до 20 символов);
- скорости обмена информацией по интерфейсным каналам (в т. ч. стартовой)

Счетчик обеспечивает фиксацию:

- 100 последних корректировок времени и перепрограммирования метрологических характеристик счетчика;
- 100 последних пропаданий и выходов за пределы допустимых значений фазных напряжений;
- 100 последних отрицательных результатов самодиагностики.

Обмен информацией с внешними устройствами обработки данных осуществляется через оптический порт или один из интерфейсов RS485, RS232.

Оптический порт и протокол обмена соответствуют стандарту ГОСТ Р МЭК 61107-2001.

Счетчик обеспечивает сохранение накопленных показаний и констант пользователя не менее 10 лет, а ход часов и ведение календаря – не менее 3 лет при отсутствии внешнего питающего напряжения.

базовые исполнения

ЦЭ6850M 0,2S/0,5 220B 1-1,5A 1H 1 P Ш31	ЦЭ6850M 0,5S/1 220B 1-1,5A 2H 1 P Ш31
ЦЭ6850M 0,2S/0,5 220B 1-1,5A 1H 2 P Ш31	ЦЭ6850M 0,5S/1 220B 1-1,5A 2H 2 P Ш31
ЦЭ6850M 0,2S/0,5 220B 1-1,5A 2H 1 P Ш31	ЦЭ6850M 0,5S/1 220B 5-7,5A 1H 1 P Ш31
ЦЭ6850M 0,2S/0,5 220B 1-1,5A 2H 2 P Ш31	ЦЭ6850M 0,5S/1 220B 5-7,5A 1H 2 P Ш31
ЦЭ6850M 0,2S/0,5 220B 5-7,5A 1H 1 P Ш31	ЦЭ6850M 0,5S/1 220B 5-7,5A 2H 1 P Ш31
ЦЭ6850M 0,2S/0,5 220B 5-7,5A 1H 2 P Ш31	ЦЭ6850M 0,5S/1 220B 5-7,5A 2H 2 P Ш31
ЦЭ6850M 0,2S/0,5 220B 5-7,5A 2H 1 P Ш31	ЦЭ6850M 1/2 220B 5-100A 1H 1 P Ш31
ЦЭ6850M 0,2S/0,5 220B 5-7,5A 2H 2 P Ш31	ЦЭ6850M 1/2 220B 5-100A 1H 2 P Ш31
ЦЭ6850M 0,5S/1 220B 1-1,5A 1H 1 P Ш31	ЦЭ6850M 1/2 220B 5-100A 2H 1 P Ш31
ЦЭ6850M 0,5S/1 220B 1-1,5A 1H 2 P Ш31	ЦЭ6850M 1/2 220B 5-100A 2H 2 P Ш31

характеристики надежности

- Средняя работа до отказа не менее 160000 часов.
- Межповерочный интервал 16 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 4 года.

нормативно-правовое обеспечение

ГОСТ Р 52320-2005 (МЭК62052-11:2003)

ГОСТ Р 52322-2005 (МЭК62053-21:2003)

FOCT P 52323-2005 (M9K62053-22:2003)

ГОСТ P 52425-2005 (МЭК62053-22:2003)

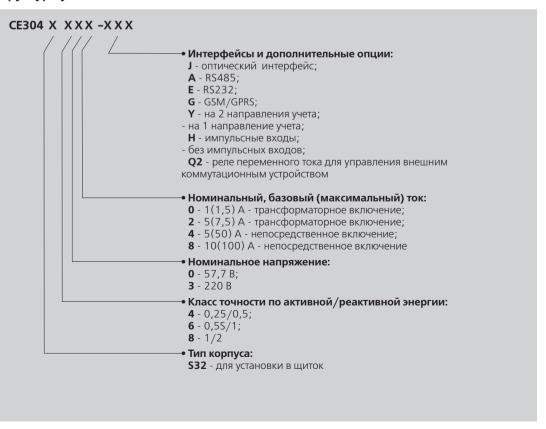
Микропроцессорные многофункциональные

Предназначен для измерения и учета активной и реактивной электроэнергии, измерения активной, реактивной и полной мощности, частоты, коэффициента мощности, среднеквадратического значения напряжения и силы в трехфазных четырехпроводных цепях переменного тока. Организация многотарифного учета электроэнергии в составе АИИС КУЭ на промышленных предприятиях и объектах энергетики.

CE304

основные технические характеристики

Класс точности	0,2S/0,5; 0,5S/1; 1/2
Число тарифов	4
Частота измерительной сети, Гц	50±2,5
Номинальное напряжение, В	57,7; 230
Базовый (максимальный) ток, А	1(1,5); 5(7.5); 5(50); 10(100)
Стартовый ток (чувствительность), мА	1; 5; 10; 20
Полная (активная) потребляемая мощность параллельной цепи, не более В • А (Вт)	8(2)
Полная потребляемая мощность последовательной цепи, не более В • А	0,1
Передаточное число импульсного телеметрического выхода, имп./кВт • ч	от 400 до 50 000
Диапазон рабочих температур, °С	от -40 до +60


отличительные особенности

- Измерение показателей качества электроэнергии по ГОСТ 13/09-97.
- Параллельная работа по двум интерфейсам.
- Типы интерфейса RS485, RS232, GSM/GPRS, оптопорт.
- Индикация правильности подключения счетчика.
- Учет потерь в линиях электрической сети.
- Реле переменного тока для управления внешним коммутационным устройством.
- Устойчивость к климатическим, механическим и электромагнитным воздействиям.
- 16 профилей хранения данных с возможностью задания индивидуального времени усреднения для каждого профиля.

область применения

На предприятиях субъектов федерального, регионального, розничного рынков электроэнергии.

структура условного обозначения

Счетчик обеспечивает учет и вывод на индикацию:

- количества потребленной и отпущенной активной (реактивной) электроэнергии нарастающим итогом суммарно или раздельно по 4 тарифам;
- количества потребленной и отпущенной активной (реактивной) электроэнергии за текущий и 12 прошедших месяцев раздельно по 4 тарифам;
- количества потребленной и отпущенной активной (реактивной) электроэнергии за текущие и 45 прошедших суток раздельно по 4 тарифам;
- значений активной мощности, усредненных на заданном интервале времени, в каждом направлении учета электроэнергии;
- графиков активных мощностей. Глубина хранения графиков активных мощностей, усредненных на 60-минутном интервале до 512 суток;
- действующего тарифа и направления электроэнергии (отпуск, потребление);
- энергии потерь в цепях тока нарастающим итогом для каждого направления электроэнергии.

Дополнительно счетчик обеспечивает измерение и индикацию:

- среднеквадратических значений фазных напряжений по каждой фазе в цепях напряжения;
- среднеквадратических значений токов по каждой фазе в цепях тока;
- углов сдвига фаз между основными гармониками фазных напряжений и токов;
- углов сдвига фаз между основными гармониками фазных напряжений;
- значений коэффициентов активной и реактивной мощностей;
- значений частоты сети.

Счетчик обеспечивает задание следующих параметров:

- текущего времени и даты;
- значения ежесуточной коррекции хода часов;
- разрешения перехода на «зимнее» и «летнее» время (с заданием месяцев перехода);
- до 12 дат начала сезона;

базовые исполнения

CE304 S32 402-JAAQ2HY	CE304 S32 834-JAAQ2HY
CE304 S32 402-JAEQ2HY	CE304 S32 834-JAEQ2HY
CE304 S32 602-JAAQ2HY	CE304 S32 838-JAAQ2HY
CE304 S32 602-JAEQ2HY	CE304 S32 838-JAEQ2HY
CE304 S32 632-JAAQ2HY	CE304 S32 432-JAAQ2HY
CE304 S32 402-JGAQ2HY	CE304 S32 834-JGAQ2HY
CE304 S32 602-JGAQ2HY	CE304 S32 838-JGAQ2HY
CE304 S32 632-JGAQ2HY	

- до 15 зон суточного графика тарификации рабочих дней и альтернативных суточных графиков тарификации для каждого сезона;
- до 32 исключительных дней (дни, в которые тарификация отличается от общего правила и задается пользователем);
- графиков тарификации субботних и воскресных дней;
- коэффициентов трансформации тока и напряжения;
- пароля для доступа по интерфейсу (до 8 символов);
- идентификатора (до 24 символов);
- скорости обмена (в т. ч. стартовой);
- перечня кадров, выводимых на индикацию.

Счетчик обеспечивает:

- коррекцию хода часов (±30 сек/сутки);
- обнуление всех энергетических параметров (при соответствующем доступе);
- сохранение накопленных показаний и констант пользователя не менее 10 лет. А ход часов и ведение календаря не менее 8 лет при отсутствии внешнего питающего напряжения;
- обмен информацией с внешними устройствами обработки данных через оптический порт;
- один или два независимо работающих интерфейса типа RS485, RS232.

Счетчик производит фиксацию в журналах фактов:

- последних корректировок любых программируемых параметров, в том числе обнулений энергетических параметров и коррекций времени;
- последних изменений фазных напряжений (пропаданий, выходов за заданные пределы);
- последних изменений состояния счетчика (сбоев, результатов тестирования).

В счетчике предусмотрены:

- суммирование импульсов от внешних устройств (счетчики электрической энергии, счетчики воды, газа, датчики охраны или пожарной сигнализации) с учетом программируемых коэффициентов трансформации для каждого входа и ведение учета нарастающим итогом согласно тарифному расписанию;
- 4 входа суммирования импульсов от внешних устройств (при наличии модуля импульсных входов);
- 2 выхода для управления нагрузкой (при наличии модуля управления нагрузкой).

Счетчик обеспечивает следующие программируемые критерии управления нагрузкой: по тарифам, лимиту мощности или потребленной энергии, состоянию фаз, заданному времени, команде через интерфейс.

Предусмотрена программно-аппаратная защита от любых изменений системной памяти и памяти накопленных данных (кроме начального обнуления памяти накопленных данных при соответствующем уровне доступа), а также памяти программ (программируемых параметров) от несанкционированных изменений (система паролей и пломбируемая кнопка).

характеристики надежности

- Средняя работа до отказа не менее 120000 часов.
- Межповерочный интервал 8 лет.
- Средний срок службы 30 лет.
- Гарантийный срок эксплуатации 4 года.

нормативно-правовое обеспечение

ГОСТ Р 52320-2005 (МЭК62052-11:2003)

ГОСТ Р 52322-2005 (МЭК62053-21:2003)

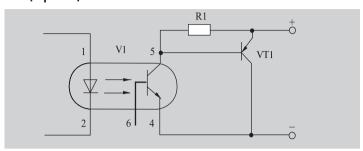
FOCT P 52323-2005 (M9K62053-22:2003) FOCT P 52425-2005 (M9K62053-22:2003)

Приложение А

Телеметрический импульсный канал электронных счетчиков

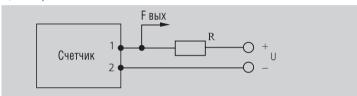
назначение

Телеметрический импульсный канал (ТИК) служит для передачи информации об измеренной электрической мощности, а также для проверки счетчика на соответствие классу точности. ТИК передает информацию о значении измеренной счетчиком мгновенной мощности в числоимпульсном коде. Значение мощности прямо пропорционально частоте следования импульсов. Максимальная частота следования импульсов — 10 Гц, что соответствует максимальному уровню измеряемой счетчиком мощности. Информация об энергии формируется путем подсчета количества импульсов в расчетное время. Количество импульсов, соответствующее 1 кВт • ч измеряемой энергии, является постоянной величиной для каждого типа и модификации счетчика и носит название передаточного числа, которое указано в паспорте и на лицевой панели счетчиков.


параметры импульсов

- Номинальное напряжение на контактах телеметрических выходов в состоянии «разомкнуто» равно 10±2 В, максимальное значение 24 В.
- Величина номинального тока через контакты телеметрических выходов в состоянии «замкнуто» равна 10 ± 1 mA, максимальная 30 mA.
- Длительность импульсов не менее 15 мс.
- Форма импульсов меандр.
- Источником энергии ТИК является устройство приема информации.

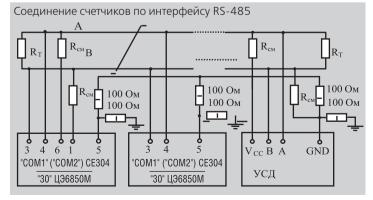
нормативно-правовое обеспечение


```
FOCT P 52320-2005 (MЭK62052-11:2003)
FOCT P 52322-2005 (MЭK62053-21:2003)
FOCT P 52323-2005 (MЭK62053-22:2003)
FOCT P 52425-2005 (MЭK62053-23:2003)
(MЭK62053-31)
```

спецификация

Выходные цепи телеметрических каналов реализованы на оптопаре, на выходе которой стоит транзистор с открытым коллектором.

Для обеспечения функционирования ТИК необходимо подать питающее напряжение по схеме:

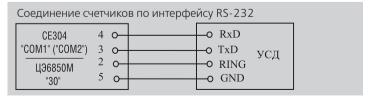

Величина сопротивления R рассчитывается по формуле: R=U/I, где U-H напряжение питания, B; I-C сила тока, A.

Интерфейсные каналы многофункциональных электронных счетчиков

назначение

Интерфейсные каналы последовательной передачи информации RS-485 и RS-232 служат для передачи всей информации, содержащейся в памяти счетчиков, по выделенной линии связи на диспетчерскую ЭВМ, а также для программирования констант и коэффициентов счетчиков.

спецификация

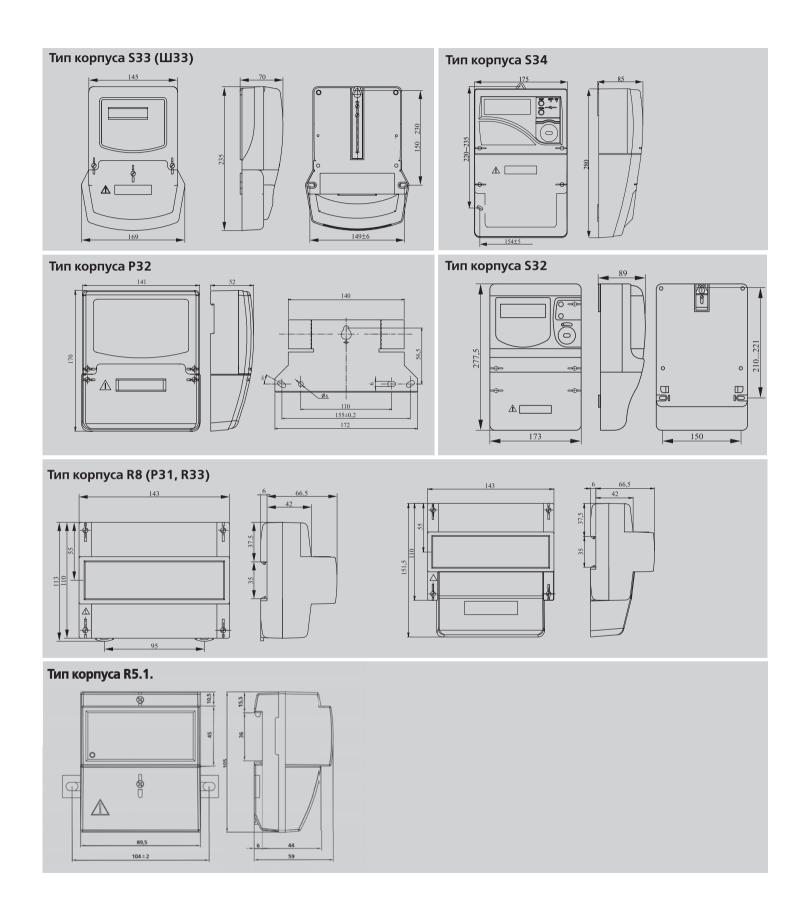

УСД – устройство сбора данных

Rcm = 560 Oм, резистор смещения (установлен в каждом счетчике) Rt = 120 Oм, резистор-терминатор с номиналом, равным волновому сопротивлению кабеля

Если потенциалы земли в местах установки счетчиков и УСД равны, то достаточно подключить контакт 5 счетчиков к точке нулевого потенциала, в противном случае необходимо подключить дренажный провод кабеля к контакту 5 каждого счетчика.

Если длина линий связи не превышает нескольких метров и отсутствуют источники помех, то схему подключения можно значительно упростить, подключив счетчик к УСД или ПЭВМ, используя только два сигнальных провода A и B без терминальных резисторов.

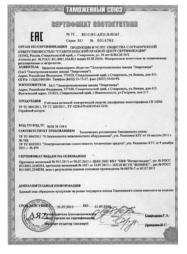
Для подключения резисторов смещения необходимо соединить контакты 4-6 и 3-1 «COM1», «COM2» на нескольких счетчиках в зависимости от уровня помех на линиях связи.


нормативно-правовое обеспечение

ГОСТ Р МЭК 61107-2001

Приложение Б

Габаритные чертежи корпусов. Общие виды счётчиков


www.energomera.ru

Сертификация

Вся электротехническая продукция производства ЗАО «Электротехнические заводы «Энергомера» полностью сертифицирована

