H11L1M, H11L2M, H11L3M 6-Pin DIP Optocoupler

Features

- High Data Rate, 1 MHz Typical (NRZ)

■ Free from Latch-up and Oscilliation Throughout Voltage and Temperature Ranges

- Microprocessor Compatible Drive

■ Logic Compatible Output Sinks 16 mA at 0.4 V Maximum
■ Guaranteed On/Off Threshold Hysteresis

- Wide Supply Voltage Capability, Compatible with All Popular Logic Systems
■ Underwriters Laboratory (UL) Recognized File \#E90700, Volume 2

Description

The H11LXM series has a high-speed integrated circuit detector optically coupled to a gallium-arsenide infrared emitting diode. The output incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open-collector output for maximum application flexibility.

■ VDE Recognized - File \#102497 - Add Option V (e.g., H11LIVM)

Applications

■ Logic-to-Logic Isolator

- Programmable Current Level Sensor

■ Line Receiver-Eliminate Noise and Transient Problems

- AC to TTL Conversion-Square Wave Shaping

■ Digital Programming of Power Supplies
■ Interfaces Computers with Peripherals

Schematic

Figure 1. Schematic

Package Outlines

1
Figure 2. Package Outlines

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameters	Value	Units
Total Device			
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
TOPR	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	260 for 10 seconds	${ }^{\circ} \mathrm{C}$
P_{D}	Total Device Power Dissipation at $25^{\circ} \mathrm{C}$ Derate Above $25^{\circ} \mathrm{C}$	250	mW
		2.94	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Emitter			
I_{F}	Continuous Forward Current	30	mA
V_{R}	Reverse Voltage	6	V
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Forward Current - Peak ($1 \mu \mathrm{~s}$ pulse, 300 pps)	100	mA
P_{D}	LED Power Dissipation	60	mW
Detector			
P_{D}	Detector Power Dissipation	150	mW
V_{O}	V_{45} Allowed Range	0 to 16	V
V_{CC}	V_{65} Allowed Range	3 to 16	V
10	I_{4} Output Current	50	mA

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Typ.	Max.	Units
Emitter							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	All		1.2	1.5	V
		$\mathrm{I}_{\mathrm{F}}=0.3 \mathrm{~mA}$		0.75	1.0		
I_{R}	Reverse Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	All			10	$\mu \mathrm{A}$
CJ	Capacitance	$\mathrm{V}=0, \mathrm{f}=1.0 \mathrm{MHz}$	All			100	pF
Detector							
V_{CC}	Operating Voltage Range		All	3		15	V
$\mathrm{I}_{\mathrm{CC} \text { (off) }}$	Supply Current	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All		1.6	5.0	mA
$\mathrm{IOH}^{\text {l }}$	Output Current, High	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$	All			100	$\mu \mathrm{A}$

Transfer Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.	Max.	Units
DC Characteristics							
$\mathrm{I}_{\mathrm{CC} \text { (on) }}$	Supply Current	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All		1.6	5.0	mA
V_{OL}	Output Voltage, Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{on})} \text { max. } \end{aligned}$	All		0.2	0.4	V
$\mathrm{I}_{\text {(on) }}$	Turn-On Threshold Current ${ }^{(1)}$	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	H11L1M			1.6	mA
			H11L2M			10.0	
			H11L3M			5.0	
$\mathrm{I}_{\text {(off) }}$	Turn-Off Threshold Current	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All	0.3	1.0		mA
$\mathrm{I}_{\mathrm{F} \text { (off) }} / \mathrm{I}_{\mathrm{F} \text { (on) }}$	Hysteresis Ratio	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	All	0.50	0.75	0.90	

AC Characteristics, Switching Speed

$\mathrm{t}_{\text {on }}$	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{on}),}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		1.0	4.0	$\mu \mathrm{~s}$
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{on}),}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		0.1		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{off}}$	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{on})}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		1.2	4.0	$\mu \mathrm{~s}$
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{on}),}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		0.1		$\mu \mathrm{~s}$
			All		1.0		MHz

Isolation Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{t}=1$ Second	7500			$\mathrm{~V}_{\text {PEAK }}$
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}_{\text {I-O }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.4	0.6	pF
$\mathrm{R}_{\text {ISO }}$	Isolation Resistance	$\mathrm{V}_{\text {I-O }}= \pm 500 \mathrm{VDC}$	10^{11}			Ω

Note:

1. Maximum $\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$ is the maximum current required to trigger the output. For example, a 1.6 mA maximum trigger current would require the LED to be driven at a current greater than 1.6 mA to guarantee the device turns on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 60 mA .

Safety and Insulation Ratings

As per IEC 60747-5-2, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings is ensured by means of protective circuits.

Symbol	Parameter	Min.	Typ.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 see Table 1				
	For Rated Main Voltage < 150 Vrms		I-IV		
	For Rated Main Voltage < 300 Vrms		I-IV		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V_{PR}	Input to Output Test Voltage, Method b, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1$ Second, Partial Discharge $<5 \mathrm{pC}$	1594			$V_{\text {peak }}$
	Input to Output Test Voltage, Method a, $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=60$ Seconds, Partial Discharge $<5 \mathrm{pC}$	1275			$V_{\text {peak }}$
$V_{\text {IORM }}$	Maximum Working Insulation Voltage	850			$V_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over Voltage	6000			$V_{\text {peak }}$
	External Creepage	7			mm
	External Clearance	7			mm
	Insulation Thickness	0.5			mm
R_{IO}	Insulation Resistance at Ts, $\mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	10^{9}			Ω

Typical Performance Curves

Figure 3. Transfer Characteristics

Figure 5. Threshold Current vs. Supply Temperature

Figure 7. Supply Current vs. Supply Voltage

Figure 4. Threshold Current vs. Supply Voltage

Figure 6. Output Voltage, Low vs. Load Current

Figure 8. LED Forward Voltage vs. Forward Current

Typical Performance Curves (Continued)

Figure 9. Switching Test Circuit and Waveforms

Reflow Profile

Figure 10. Reflow Profile

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	H11L1M	Standard Through Hole Device
S	H11L1SM	Surface Mount Lead Bend
SR2	H11L1SR2M	Surface Mount; Tape and Reel
T	H11L1TM	$0.4 "$ Lead Spacing
V	H11L1TVM	VDE 0884
TV	H11L1SVM	VDE 0884, 0.4" Lead Spacing
SV	H11L1SR2VM	VDE 0884, Surface Mount
SR2V		

Package Dimensions

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION: MKT-N06BREV3.

Figure 11. 6-pin DIP Through Hole
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings
http://www.fairchildsemi.com/dwg/N0/N06B.pdf

Package Dimensions (Continued)

LAND PATTERN RECOMMENDATION

A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION : MKT-N06CREV3.

Figure 12. 6-pin DIP Surface Mount
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/dwg/NO/N06C.pdf

Package Dimensions (Continued)

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION: MKT-N06DREV3.

Figure 13. 6-pin DIP 0.4" Lead Spacing
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings.
http://www.fairchildsemi.com/dwg/NO/NO6D.pdf

Tape Dimensions

Note:
All dimensions are in millimeters.
Figure 14. Tape Dimensions

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {TM }}$
AX-CAP ${ }^{\text {® }}$	FRFET ${ }^{\text {® }}$	(1)	[SYSTEM ${ }^{\text {® }}$
BitSiC ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	PowerTrench ${ }^{\text {® }}$	GENERAL ${ }^{8}$
Build it Now ${ }^{\text {TM }}$	GreenBridge ${ }^{\text {TM }}$	PowerXS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBuck ${ }^{(1)}$
CorePOWER ${ }^{\text {™ }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyCalc ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {M }}$	Gmax ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	GTO ${ }^{\text {M }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTOTM
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	$)^{\text {TM }}$	TinyPWM ${ }^{\text {TM }}$
Dual Cool ${ }^{\text {™ }}$	Making Small Speakers Sound Louder		TinyWire ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {b }}$	and Better ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TranSic ${ }^{\text {m }}$
EfficientMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
ESBC ${ }^{\text {m }}$	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {® * }}$
5^{8}	MicroFET ${ }^{\text {m }}$	SMART START ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
Fairchild ${ }^{\text {® }}$	MicroPak ${ }^{\text {M }}$	Solutions for Your Success ${ }^{\text {TM }}$	ω
Fairchild Semiconductor ${ }^{\text {® }}$	MicroPak2 ${ }^{\text {TM }}$	STEALTH ${ }^{\text {™ }}$	SerDes
FACT Quiet Series ${ }^{\text {M }}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {® }}$	UHC ${ }^{\text {en }}$
$\mathrm{FACT}^{\text {® }}$	MotionMax ${ }^{\text {TM }}$ mWSaver ${ }^{\text {® }}$	SuperSOT ${ }^{\text {w- }} 3$	Ultra FRFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	OptoHiT ${ }^{\text {m }}$	SuperSOT ${ }^{\text {m-6 }}$ 6	$V C X^{\top M}$
FastvCore ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$ - 8	VisualMax ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	OPTOPLANAR ${ }^{\text {® }}$	SupreMOS ${ }^{\text {® }}$	VoltagePlus ${ }^{\text {TM }}$
FPS ${ }^{\text {TM }}$	OPTOPLANAR	SyncFET ${ }^{\text {m }}$	VoltagePlus ${ }^{\text {™ }}$ X^{T+M}

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOTEXPAND THE TERMS OF FAIRCHILD'S WORLDWDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
 FAIRCHIL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, ww.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:
H11L1SR2VM H11L1SM H11L1SVM H11L1SR2M H11L1VM H11L1M H11L1TVM

