
Recommended circuit breaker specifications: DC circuit breaker 120A; AC circuit breaker: 40A.

System electrical connection

AC IOAU

If AC load needs to be connected to the Grid, a single-pole double-throw switch is required, as shown in the following figure.

Note: AC load can not be connected to the Grid and the Inverter at the same time.

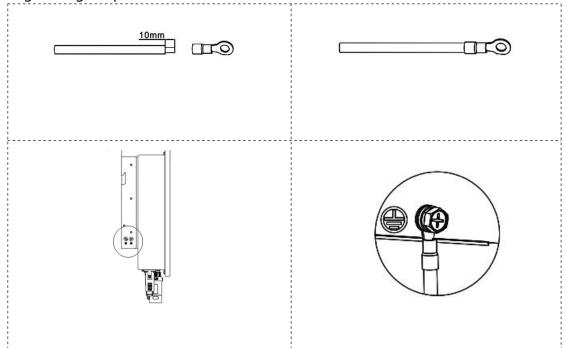
6.2 Wiring Instructions for External Ports

Table 6-1 Cable models and specifications

Port	Definition	Cable type	Cable size
BATTERY	+: Positive pole of battery -: Negative pole of battery	Outdoor multi-core copper cable	Conductor cross-sectional area: 16mm²~25mm²
PV1 PV2 +	+: Positive pole of PV -: Negative pole of PV	Outdoor multi-core copper cable	Conductor cross-sectional area: 4mm²~6mm²

		L3	Outdoor	Conductor
	Load	N	multi-core	cross-sectional area:
AG LOAD		PE	copper cable	6mm²~10mm²
		L3	Outdoor	Conductor
	Grid	N	multi-core	cross-sectional area:
AC GRID		PE	copper cable	6mm²~10mm²

6.3Connecting Protective Earth (PE)



Since the inverter is a transformerless type, it is required that the positive and negative poles of the PV array cannot be grounded, Otherwise, it will cause fault to the inverter. In the PV power generation system, all non-current-carrying metal parts (such as brackets, distribution cabinet housing, inverter housing, etc.) should be connected to the ground.

Step 1: Use yellow-green outdoor cable ≥4mm², Strip the insulation layer of the grounding cable to an appropriate length with wire stripper;

Step 2: Put the wire core stripped of the insulation layer into the conductor crimping area of the OT terminal, and press it tightly with crimping pliers;

Step 3: Fix the OT terminal with M6 inner hexagon screws, and the recommended tightening torque is 5N•m.

6.4 Connecting PV Cables

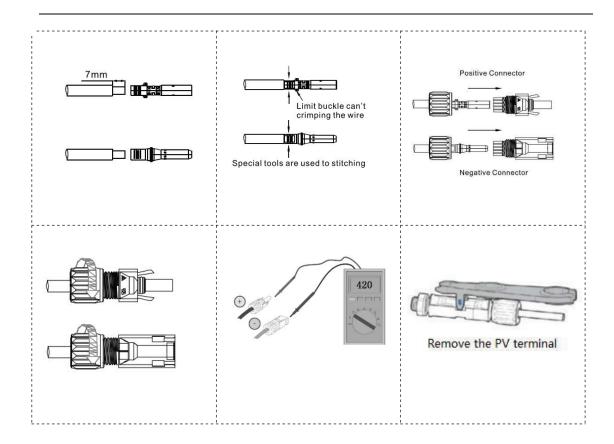
- > Do not connect the same PV string to multiple inverters, or the inverter may be damaged.
- Before connecting the PV strings to the inverter, please confirm the following information, or it may cause permanent damage to the inverter, and even cause a fire and result in

personal and property losses.

- Please ensure that the maximum short-circuit current and maximum input voltage of each PV are within the allowable range of the inverter.
- Please ensure that the positive pole of the PV string is connected to the PV+ of the inverter, and the negative pole of the PV string is connected to the PV- of the inverter.

The PV string output does not support grounding. Before connecting the PV string to the inverter, ensure that the minimum insulation resistance of the PV string to ground meets the minimum insulation resistance requirements.

Step 1: Check and ensure that the PV knob switch is set to "OFF".


Step 2: According to the cable model and specification in Table 6-1, cable with appropriate type and specification, then strip the cable insulation layer. The specific stripping length is shown in the figure below.

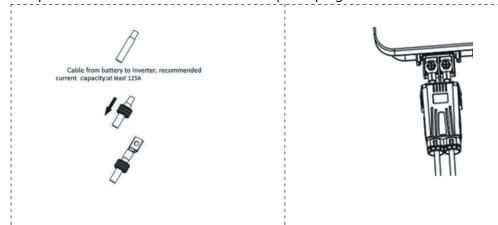
Step 3: Insert the positive and negative cables with the insulation layer stripped into the positive and negative metal terminals respectively, and use crimping pliers to press the cable and the metal core of the terminal tightly to ensure that the cable and the metal core are crimped firmly.

Step 4: Pass the crimped positive and negative cables through the lock nut, and insert them into the corresponding plastic shells until you hear a "click". This indicating that the metal core has been snapped into place, and tighten the lock nut.

Step 5: Check the positive and negative poles with a multimeter. After confirming that they are correct, insert them into the PV input terminal of the inverter.

To remove the PV connector from the inverter, you can use a disassembly wrench to insert into the fixing bayonet, press down firmly, and carefully remove the DC connector.

6.5 Connecting the Battery Cable


- > Battery short circuit may cause personal injury, and the instantaneous high current caused by the short circuit may release a large amount of energy, which may cause a fire.
- > Before connecting the battery cable, please confirm that the inverter and the battery are powered off, and the front and rear switches of the equipment are disconnected.
- When the inverter is running, it is forbidden to connect or disconnect the battery cable, or the operation may cause electric shock.
- Do not connect the same battery pack to multiple inverters, or the inverter may be damaged.
- Do not connect loads between the inverter and the battery.
- When connecting the battery cable, please use insulated tools to prevent accidental electric shock or short circuit of the battery.
- Please ensure that the open circuit voltage of the battery is

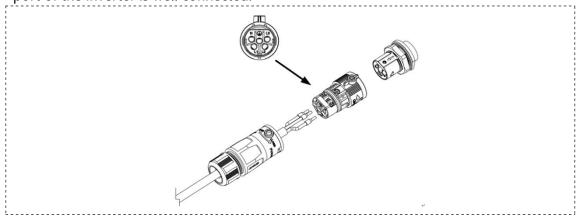
within the allowable range of the inverter.

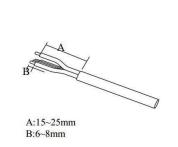
- When wiring, the battery cable should match the "BAT+" and "BAT-" of the battery terminal completely. If the cable is connected incorrectly, the equipment will be damaged.
- Please make sure that the wire core is completely inserted into the terminal wiring hole without being exposed.
- Make sure the cable connection is tight, or the terminal may be overheated and the equipment may be damaged when it is running.
- Step 1: According to the cable model and specification in Table 6-1, select the appropriate cable type and specification, and strip the cable insulation layer;
- Step 2: Put the wire core stripped of the insulation layer through the waterproof plug and the battery junction box, and then press the OT terminal tightly;
- Step 3: Lock the crimped positive and negative cables into the corresponding terminals respectively, with a locking torque of 3.5N•m;
- Step 4: Use a multimeter to check the positive and negative poles to ensure that the open circuit voltage is less than 60V;

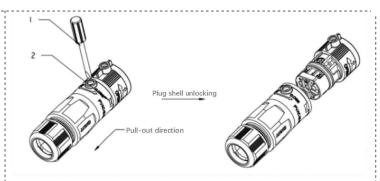
Step 5: Install the rear cover of the waterproof plug.

6.6 Connecting Off-grid Port (AC LOAD) and Grid-connected Port (AC GRID)

- > When wiring, the AC wire should fully match the "L", "N" and grounding ports of the AC terminal. If the cable is connected incorrectly, it will cause equipment damage.
- Please make sure that the wire core is completely inserted into the terminal wiring hole without being exposed.
- Please ensure that the insulating plate at the AC terminal is clamped tightly without loosening.
- Make sure the cable connection is tight, or the terminal may be overheated and the equipment may be damaged when it is running.

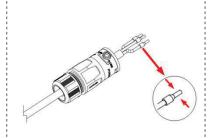

Step 1: According to the cable model and specification in Table 6-1, select the appropriate cable type and specification, and strip the cable insulation layer. For the specific stripping length, refer to the figure below;

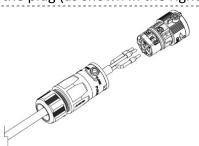

Step 2: Unlock the terminal according to the figure, and pass the stripped cable through each part of the terminal;


Step 3: Press the terminal on the cable conductor core, lock the cable in the lock hole on the terminal according to the mark, and fasten it with a screwdriver;

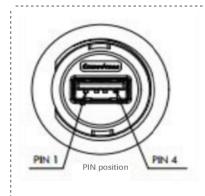
Step 4: After plugging in the terminal shell and hearing a "click", tighten the waterproof nut clockwise to ensure that the cable is firmly connected;

Step 5: Connect the connected load terminal to the load port of the inverter, push it forward until a "click" sound is heard, which indicates the load terminal and the load port of the inverter is well connected.





Unlocking operation:

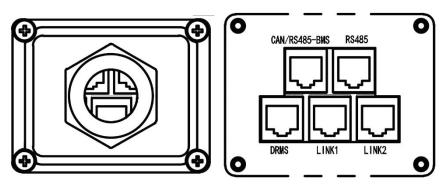

- 1. Insert a flathead screwdriver or cross screwdriver (diameter < 3-5mm) into the hole shown on the left, and turn clockwise to tighten the screw (the screw and nut are loose before turning).
- 2. Then press the buckles (mark 2) on both sides of the shell with a screwdriver in turn, and apply a backward pull-out force (as shown by the arrow) to the shell while pressing.
- 3. The pull-out force of the outward force will make the buckle and shell loose. After pressing the two buckles, the shell can be separated from the front of the plug (as shown in the right picture).

6.7 Installing WIFI/Bluetooth/4G Module

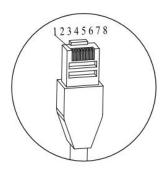
The collector is connected to WIFI/Bluetooth module by default and is used for remote monitoring and control of the inverter.

Indicator light description of WIFI/Bluetooth module

No.	Status	Description
1	RUN	Indicates normal operation, flashing every second.
2	СОМ	Indicates that the equipment data can be collected; it is always on and goes out for a short time, goes out when sending data, and turns on after receiving the data and verifying it is correct.
3	NET	Network status indicator. Flashing quickly: Searching for network, 20ms on, 180ms off. Always on: Connected to the network. Flashing slowly: The cloud platform has been registered successfully, 500ms on and 500ms off.


6.8Connecting Communication Cables

Multi-function communication port, including BMS communication, meter communication, DRMS, external dry contact signal and parallel communication.


Step 1: Pass the cables through the waterproof cover of the signal interface and their respective waterproof plugs, and crimp the RJ45 terminals according to the order of the pins.

- Step 2: Plug the cable into the communication port on the inverter side.
- Step 3: Fasten the waterproof cover with screws.

Step 4: Tighten the waterproof nut.

The pin assignment of the RJ45 socket of the communication cable is as follows:

The interfaces are described as follows:

CAN/RS485-BMS interface

PIN	Definition	Function	Remarks
1	GND_SELV	Communication ground	Communicates
2	GND_SELV	Communication ground	with lithium
3	/	NC	battery BMS, and
4	CAN_A_H	CAN high bit data	can provide CAN

5	CAN_A_L	CAN low bit data	and RS485
6	/	NC	communication
7	RS485_A_BMS	RS485 differential signal A	for lithium
8	RS485 B BMS	RS485 differential signal B	batteries
	1.0 100_5_51110	no les amerenda signal s	adaptively

Note: ① When communicating with a lithium battery, you need to pay attention to the order of the battery's communication ports and pin definitions;

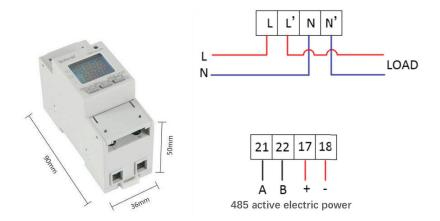
② Pay attention to whether there is a prohibition on wiring at the battery port;

DRMS interface

PIN	Definition	Function	Remarks
1	DRM1/5		
2	DRM2/6		
3	DRM3/7	DRMS interface is suitable for the Australian AS-NZS-4777.2	DRMS logical
4	DRM4/8	(some European requirements) interface safety standard	interface
5	REF GEN		
6	COM LOAD		
7	OP-	Normally open dry contact	External dry
8	OP+	signal (≦1A)	contact interface

LINK 1&2 interface (parallel communication)

PIN	LINK1 definition	LINK2 definition	Remarks
1	CON2_AO	CON1_AO	Davellel signed
2	CON2_BO	CON1_BO	Parallel signal


3	CON2_AI	CON1_AI	
4	CON2_BI	CON1_BI	
5-6	/	/	
7	CON_SyncH	CON_SyncH	
8	CON_SyncL	CON_SyncL	

RS485 interface (electric meter communication)

PIN	Definition	Function	Remarks
1	GND_SELV	Communication ground	
2	GND_SELV	Communication ground	NC
3-6	/	NC	
7	RS485_A_EEM	RS485 differential signal A	Meter 485
8	RS485_B_EEM	RS485 differential signal B	communication

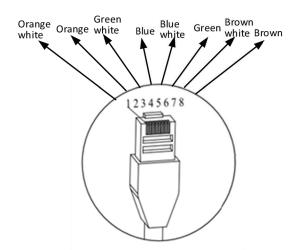
Application notes:

PIN7 and PIN8 are used for meter communication and need to be connected to ports 21 and 22 of the meter respectively (Acrel ADL200 has a built-in CT single-phase electronic kilowatt-hour meter). The meter L/N is the incoming line side of the power grid, and L'/N' is the outgoing line side (load side). Connect the meter as shown in the figure below.

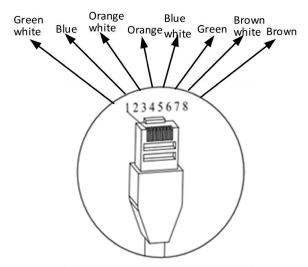
6.9 Parallel Wiring Operation

The terminal wiring steps of the parallel communication cable are as follows:

Step 1: Put the network cable plug on the table, and make sure the metal contact piece of the connector is facing up.


Step 2: Use a wire stripper to peel off the outer sheath of the network cable and uncover about 1.5cm of the insulation layer.

Step 3: Insert the LINK1 port to arrange the core sequence of the network cable. The order of the wire cores from left to right is: orange & white -orange-green & white-blue-blue & white-green-brown & white-brown. Insert the LINK2 port to arrange the core sequence of the network cable. Insert the cores of the network cable into the LINK2 port and arrange the cores in the order from left to right: green & white-blue-orange & white-orange-blue & white-green-brown & white-brown. Straighten each strand and arrange them in the correct order.


Step 4: Insert the cores into the slots of the plug, making sure that each core is fully inserted into the slot without being twisted or bent.

Step 5: Use pliers to fix the plug on the network cable, make sure the connection between the plug and the network cable is firm.

LINK1 port wiring method:

LINK2 port wiring method:

Parallel wiring is as follows:

Application notes:

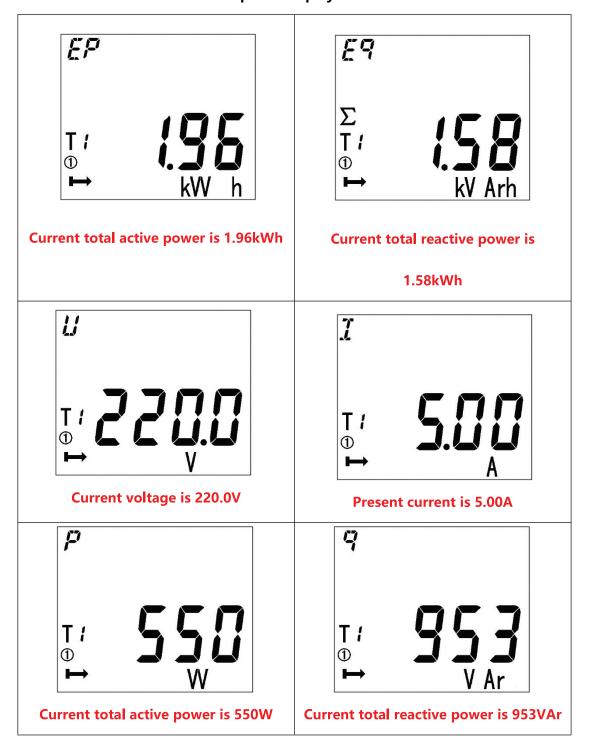
- 1) Up to 6 parallel inverters of the same model are supported, and can be set to parallel mode or three-phase mode;
- 2) Make sure that the inverters are connected to parallel cables;
- 3) The length specifications of the cables connecting the load end of the inverter to the AC LOAD end of each of the equipment must be consistent to ensure that the loop impedance is consistent, and the load current distribution to each inverter is approximately equal;
- 4) Make sure that the load power is less than the maximum power of parallel power.

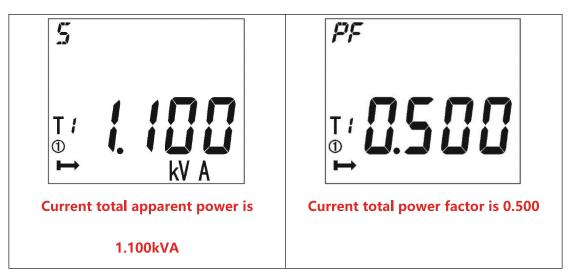
6.10 Meter Operation and Display

(1) Description of key functions

Icon	Name	Function
	Up key for voltage	Check the voltage and current in the view interface
	and current	Scroll up and flash shift in the programming interface
*	Down key for power	Check the power in the view interface Scroll down and modify the flashing bit in the programming interface
\	Electricity Programming confirmation	Check electricity in the view interface Press for 3 seconds to enter/exit menu Press OK in the programming interface to save the
	key	settings

(2) Display instructions

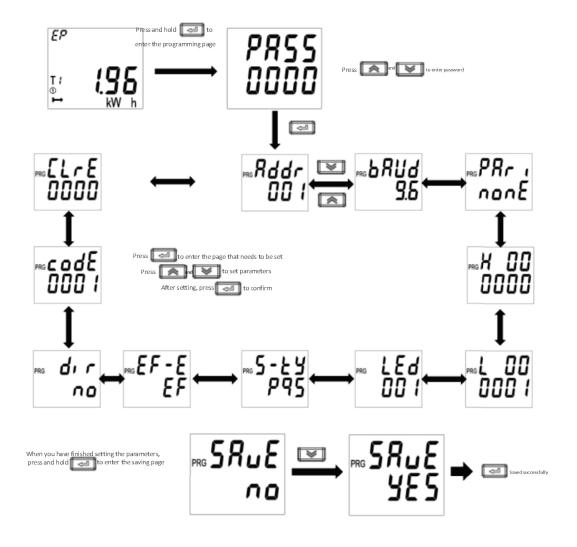

Display the total active energy after power on. The page turning can be realized through three types of viewing keys. The sequence of display pages is described as follows:


g	Voltage, current, frequency, time, MODBUS protocol address, baud
	rate, check digit, DL/T645 address, software version number, full
	display detection.
*	Total active power, total reactive power, total apparent power, and
	total power factor.
	Total active energy, forward active total energy, reverse active total
	energy, total active spike energy, total active peak energy, total active
₹ 2	flat energy, total active valley energy, total reactive energy, forward
	total reactive energy, reverse reactive total energy, total reactive spike
	energy, total reactive peak energy, total reactive level energy, and
	total reactive valley energy.

Application notes:

 The above list is the name of all display interfaces of ADL200 meter with multi-rate function. The three buttons can switch different types of display content, and the switching sequence is as above; For ADL200 meters without multi-rate function, the date, time and time-of-use electric energy (that is, the electric energy in the four periods of spike, peak, flat, and valley) are not displayed.

Example of display interface



Note: The above is only a part of the display interface, and the display modes of other interfaces are similar to the above figure. The display meaning can be judged according to the information displayed in the interface.

(3) Programming interface

Under any display item in the measurement display menu, press and hold to enter the "PASS" interface, enter the password and then press"; if the password is entered incorrectly, it will return "0000", please re-enter the password; if the password is correct, the parameters can be set. After setting, press and hold to enter the "SAVE" interface, select "YES" and then press to save and then exit, select "No" and then press to exit without saving. The programming interface flow is as follows:

Application notes:

- The initialization password is 0001
- The communication address is set to 0001
- The baud rate is set to 38400

(4) Data items can be set

Setup menu description

NI-	Secondary menu		
No.	Symbol	Meaning	Range
1	ADDR	Communication address	1-254
_		setting	

2	Baud	Baud rate selection	1200、2400、4800、9600、 19200、38400
3	Pari	Parity selection	None、Odd、Even
4	HI	DL/T645 high 6-bit meter number	000000-999999
5	LO	DL/T645 low 6-bit meter	000000-999999
6	LED	Backlight time setting	0-255 minutes, 0 is always on
7	S-TY	Apparent power calculation method	PQS,RMS
8	EF-E	Multi-rate function	EF-with multi-rate E-Without multi-rate
9	DIR	Current direction	No-Forward Yes-Reverse
10	CoDE	Password setting	1-9999
11	CLrE	Clear	0-9999

7. Equipment Trial Run

7.1 Check before Power-on

No.	Check item
1	The inverter is firmly fixed on the wall mounting bracket.
2	The cable binding meets the routing requirements, the distribution is
	reasonable, and there is no damage.
3	The PV+/PV-, BAT+/BAT- wires are firmly connected, the polarity is correct,
	and the voltage meets the connection range.
4	The DC switch is correctly connected between the battery and the inverter,
	and the DC switch is disconnected.
5	The AC circuit breaker is correctly connected between the grid port of the
	inverter and the grid, and the circuit breaker is disconnected.
6	The AC circuit breaker is correctly connected between the load port of the
	inverter and the power grid, and the circuit breaker is disconnected.
7	For lithium batteries, please make sure the communication cable is properly
	connected.

7.2 First Power-on

Important: Follow the steps below to turn on the inverter.

- 1) Make sure the inverter is not working;
- 2) Turn on the rotary switch of the inverter (when connected to PV);
- 3) Turn on the battery and close the DC switch between the battery and the inverter;
- 4) Close the AC circuit breaker between the grid port of the inverter and the grid;
- 5) Close the AC circuit breaker between the load port of the inverter and the load;
- 6) The inverter starts to run after the self-check is successful.

8. System Commissioning

8.1 Indicator Description

The LED indicator light is in the middle of the equipment panel,

and indicates the status of the inverter through three colors of red, green and blue.

Color of indicator light	Indicator status	Corresponding description	Remarks
	Always on	Grid connected	/
Green	Dialia	Standby (connected	/
	Blinking	to the grid)	
Blue	Always on	Off grid	/
	Blinking	Standby (off-grid)	/
	A l	Non-recoverable	Inverter needs power-off
	Always on	fault	inspection
	Dlinking 2 /time	A la	Non-stop or reduced
Red	Blinking 2s/time	Alarm	power operation
			The inverter is shut
	Dlinking O.F. (times	Δ I aa	down, waiting for the
	Blinking 0.5s/time	Alarm	recovery condition to be
			met

8.2 App Introduction

Users need to choose a WiFi device or 4G device when using the app.

Please contact the manufacturer for ESS LINK operation and use, and refer to the ESS LINK operation and use manual.

IOS version:please scan the QR code below to obtain or go to the App Store to search for ESS LINK to download

Android version: Please scan the QR code below to obtain.

Android domestic QR code

Android foreign QR code

IOS Domestic and foreign QR code

9. Troubleshooting and Maintenance

This section will help you figure out the causes of malfunction during inverter operation.

9.1 Regular Maintenance

Make sure the inverter is powered off.

When operating the inverter, please wear personal protective equipment.

Maintenance items	Maintenance method	Maintenance cycle
System	Check the heat sink for foreign objects	1 time/half a year~1
cleaning	and dust. Clean the heat sink if	time/year (depending on
Clearing	necessary.	ambient dust content)
	Turn the DC switch on and off 10 times	
DC switch	continuously to ensure that the DC	1 time/year
	switch functions normally.	
	Check whether the cable connection is	
Electrical	loose or disconnected, whether the	1 time/half a year~1
connection	appearance of the cable is damaged, or	time/year
	whether there is copper leakage.	
	Check whether the leakproofness of the	
A. 1. 1.	inverter inlet hole meets the	4 .: /
Airtightness	requirements. If the gap is too large or	1 time/year
	not sealed, it needs to be sealed again.	
	According to the requirements of	
	Australia, Zref should be added	
	between the inverter and the grid in the	
THDi test	THDi test.	Depending on demand
	L:0.24 Ω + j0.15 Ω; N:0.16 Ω +j0.10 Ω	
	L:0.15 Ω + j0.15 Ω ; N:0.1 Ω + j0.1 Ω	

10. Technical Parameters

Product model	Isuna 3000S	Isuna 3600S	Isuna 4000S	Isuna 4600S	Isuna 5000S	Isuna 6000S
	Battery parameters					
Number of battery input				1		
Battery type			Lithiu	m battery		
Nominal battery voltage			5	51.2V		
Battery voltage range	42V-58V					
Max. charging voltage				60V		
Nominal charging/	3kW	3.6kW	4kW	4.6kW	5kW	5kW
discharging power						
Max. continuous	75A	85A	85A	100A	100A	100A
charging/ discharging						

current						
Communication port			RS4	85/CAN		
		F	PV input			
Number of MPPT				2		
Max. input power①	4500Wp	6000Wp	6000Wp	7500Wp	7500Wp	9000Wp
Max. input voltage			6	500V		
Starting voltage	95V					
MPPT voltage range	80~550V					
Full load MPPT voltage			350)~500V		
range						
Nominal input voltage		360V				
Numbers of MPPT		2				
Max. input string per			1			

МРРТ	
Max. input current	13A/13A
Max. short-circuit current	18A/18A

Remark ①: Two independent PV channels are recommended, and the maximum power of a single PV does not exceed 4500W.

	Grid-connected parameters					
Nominal output power	3000W	3600W	4000W	4600W	5000W	6000W
Max. input power from	3600W	5000W	5000W	6000W	6000W	6000W
grid						
Max. output current	13.6A	16.4A	18.2A	20.8A	22.7A	27.2A
Max. input current from	16.4A	22.7A	22.7A	27.2A	27.2A	27.2A
grid						
Nominal grid voltage	230V					
Grid voltage range	184-276V					

Nominal grid frequency	50Hz						
Frequency range			45Hz~55H	Hz/55Hz~65Hz			
Power factor			~1 (0.8	lead-0.8 lag)			
THDi(@rated power)				<3%			
	Off-grid parameters						
Nominal output power	3kVA	3.6kVA	4kVA	4.6kVA	5kVA	6kVA	
Max. output power	3kVA	3.6kVA	4kVA	4.6kVA	5kVA	6kVA	
Max. output current	13.6A	16.4A	18.2A	20.8A	22.7A	27.2A	
Nominal voltage	230V						
Nominal frequency	50Hz						
THDu (@linear load)	<2%						
Switching time	<20ms						
Efficiency							

European efficiency	97.2%	97.3%	97.3%	97.4%	97.5%	97.5%	
Max. efficiency	97.5%	97.5%	97.8%	97.8%	98%	98%	
Max. battery charging/		95.2%					
discharging efficiency							
		Pı	rotection				
Insulation resistance			Inte	egrated			
detection							
Residual current	Integrated						
monitoring							
Input reverse polarity	Integrated						
protection							
Islanding protection	Integrated						
Overvoltage and	Integrated						

overload protection	
AC short circuit	Integrated
protection	
AC side overvoltage level	III
Battery and PV	II
overvoltage level	
Surge protection	Integrated
Lightning protection	Integrated
	General parameters
Installation method	Wall-mount
Size(W*H*D)	500mm*470mm*180mm (without terminals)
Weight	21kg
Standby power	≤10W

consumption					
Operating temperature	temperature -25°C~+60°C				
range	(>40°C, Derated operation)				
Permissible humidity	0~100%				
range					
Noise	<25dB (A)				
Permissible altitude	<4000m				
	(≤3000m under full load, every increase of 100m, the power will be reduced by 5%)				
Condensation method	Self-heating and heat dissipation				
Ingress protection grade	IP65				
Monitoring	H5/LED/APP/WIFI/4G/Bluetooth (optional)				
Communication port RS485/CAN/DRED/dry contact/parallel communication					
Performance and Certification					

Parallel function	Yes
Standard warranty	10 years
Safety standard	IEC 62109-1, IEC 62109-2, EN 62109-1, EN 62109-2
EMC	EN61000-6-1, EN61000-6-2, EN61000-6-3, EN61000-6-4
Grid-connected standard	VDE-AR-N 4105, VDE V 0126-1-1, G98/G99, CEI 0-21, EN50549
	NRS 097-2-1, AS 4777.2, R25

