КОНВЕРТОР ДЛЯ РЕЗОЛЬВЕРА ТИП CONV_RES/ENC 01

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

СОДЕРЖАНИЕ

1. Общие сведения	2
2. Условия эксплоатации, хранения и транспортировки	2
3. Технические характеристики	4
3.1 Общие характеристики	
3.2 Секция резольвер	
2.3 Секция энкодер	(
4. Индикация ошибок	7
5. Настройка конвертора	7
6. Подключение конвертора	

1. Общие сведения

Конвертор CONV_RES/ENC 01 предназначен для преобразования сигналов из резолвера в импульсы квадратурного энкодера. Применяется для обратной связи по скорости или позициия приводов подачи и главного двжения, для создания замкнутых позиционирующих систем и др.

Конвертор подключается прямо к входу для энкодера тиристорных преобразователей серий 4XXX, 12XXX, 13XXX и 14XXX без допълнительных внешних элементов. Конвертор питается из внутренного напряжения преобразователя, предназначено для питания энкодера.

2. Условия эксплоатации, хранения и транспортировки

Конветоры типа CONV_RES/ENC 01можно эксплоатировать, сохранять и транспортировать при следующих условий:

- температура окружающей среды от +5 до +45°C;
- максимальная относительная влажность воздуха до 80% при температуре 30°C;
- взрывобезопасная среда без наличия агрессивных газов и пары в концентрации, разрушающей металлы и изоляцию, и не должна быть насыщена токопроводящей пылью;
- допустимые вибрации частотой от 1 до 35 Hz и ускорение не более 4,9 m/s 2 .

3. Технические характеристики

3.1 Общие характеристики

На рисунке 1 показаны присоединительные и габаритные размеры конвертора и расположение интерфейсных разьемов.

Напряжение питания конвертора $5V \pm 5\%$ и максимальный ток не больше 200 mA:

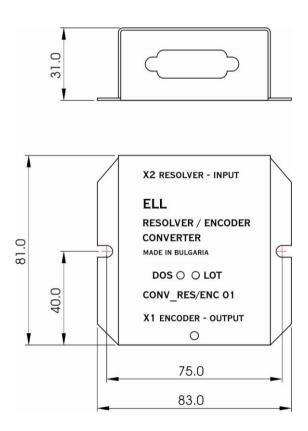


Рисунок 1 Присоединительные и габаритные размеры CONV_RES/ENC 01

3.2 Секция резольвер

- выход напряжения возбуждения **EXC** дифференциальный, 8Vp-p max;
- выходный ток контура возбуждения **EXC** 30 mA max;
- частота напряжения возбуждения от 10 kHz до 20 kHz;
- дифференциальные измерительные входы SIN Hi, SIN Lo, COS Hi, COS Lo;
- минимальная амплитуда входных напряжений при 90° и 270°el 3.6Vp-p;
- максимальная амплитуда входных напряжений при 90° и 270°el 3.9Vp-p;
- разрешающая способность 12 bit;
- максимальная угловая ошибка:
 - ± 22 угловых минут для стандартного выполнения;
 - ± 11 угловых минут для специального выполнения по заказу клиента;
- динамическая ошибка 30 угловых минут;
- автоматическое компенсирование дефазирования выходящих напрежений относительно напряжению возбуждения до 44 °el.
- 1 **Замечание:** при заказа, если не указано другое, выполняется конвертор с максимальной угловой ошибкой \pm 22 угловых минут.

В таблице 1 и рисунке 2 показано соответствие между сигналами и выводами разьема **X2** для резольвера, а на рисунке 3 показано подключение резольвера к преобразователю.

	Interface X2: Connector DB9 - F					
No	Сигнал	№	Сигнал			
1	SH3 экран витой пары 3	6	SH2 экран витой пары			
2	SH1 экран витой пары 1	7	S3 (COS Lo)			
3	S1 (COS Hi)	8	S2 (SIN Hi)			
4	S4 (SIN Lo)	9	R2 (EXC Lo)			
5	R1 (EXC Hi)					

Таблица 1 Соответствие между сигналами и выводами разьема Х2 для резольвера

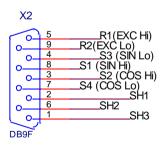


Рисунок 2 Соответствие между сигналами и выводами разьема **X2** для резольвера

ВНИМАНИЕ: экраны SH1, SH2, SH3 не надо подключат к массу устройства.

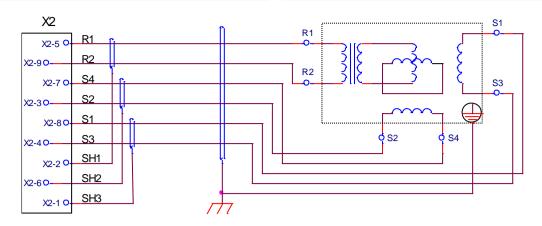


Рисунок 3 Схема подключения CONV RES/ENC 01 к резольверу

2.3 Секция энкодер

- число импульсов для одного оборота 1024 (для резольвера с одной парой полюсов);
- выходные сигналы дифференциалные последовательности А А\, В В\, С С\;
- максимальная частота выходных импульсов 200 kHz.

В таблице 2 и на рисунке 4 показано соответствие между сигналами и выводами разьема **X1** выхода **ENC**, а на рисунке 5 показаны структура и форма сигналов выхода **ENC**.

Interface X1: Connector DB15 - F					
№	Сигнал	№	Сигнал		
1	A	9	+5V		
2	$A \backslash$	10	+5V		
3	В	11	+5V		
4	B\	12	GND		
5	С	13	GND		
6	C\	14	GND		
7	не подключен	15	GND		
8	не подключен				

Таблица 2 Соответствие между сигналами и выводами разьема **X1** выхода **ENC**

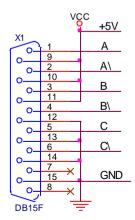


Рисунок 4 Соответствие между сигналами и выводами разьема **X1** на выходе **ENC**

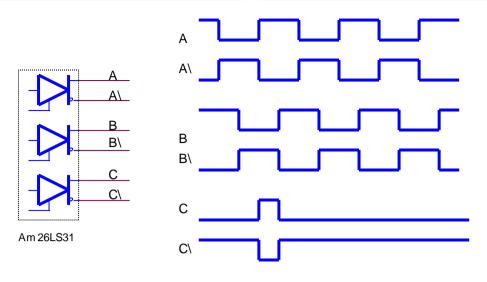


Рисунок 5 Структура выходов и форма сигналов на выходе **ENC**

Пример

В двигателях постоянного тока, с монтированным резольвером, обычно имеют и милтипликатор оборотов. Например серводвигатель 5МТ-Р производится с резольвером РБ02 с двумя парами полюсов и с монтированным мултипликатором с коэфициентом передачи 1:2.5. Число электрических циклов резольвера для одного оборота N определяется с выражением:

$$N = i * P = 2.5 * 2 = 5$$

где:

і – коэфициент передачи мултипликатора;

 ${\bf P}$ – число пар полюсов резольвера /для ${\bf P}$ 502 ${\bf P}$ = 2/.

Число импульсов на выходе ковертора для одного оборота двигателя:

1024 * 5 = 5120имп./об.

4. Индикация ошибок

На передней панели конвертора разположены два красные светодиоды **DOS** и **LOT** для индикации следующих ошибок:

- **DOS** Degradation of signal индикация для длительного превышения допустимых минимального и максимального пределов амплитуды сигналов SIN и COS;
- LOT Loss of Position Tracking индикация для превышения внутренной ошибки преобразувании больше 5 градуссов. Эта ошибка связана с превышением максимално допустимой угловой скорости, както и с дефазарованием сигналов.

При нормальной работе конвертора оба светодиоды не светят.

5. Настройка конвертора

Рекомендуется настройку конвертора CONV_RES/ENC 01 проводить в фабричных условиях, а тип резольвера указывается при заказе. Для этого указываются следующие данные для резольвера:

- напряжение обмотки возбуждения **EXC**;
- коэффицент трансформации резольвера соотношение между напряжениями обмотки возбуждения EXC и измерительными обмотками SIN и COS;

- тип резольвера контактный или бесконтактный;
- дефазирование между напряжениями обмотки возбуждения **EXC** и несущей частотой измерительных обмоток **SIN** и **COS**.

Конвертор CONV_RES/ENC 01, если не указано другое, настроен фабрично для работы с бесконтактным резольвером типа PБ02, который е с двумя парами полюсов, дефазирование выходящих сигналов 72 $^{\circ}$ el и коэффициент трансформации 0.5.

Настройка конвертора CONV_RES/ENC 01 у клиента рекомендуется только в изключительных случаях по методику предоставлена производителем.

6. Подключение конвертора

На рисунке 6 показано подключение резольвер PБ02 к тиристорному преобразователю серии 12XXX.

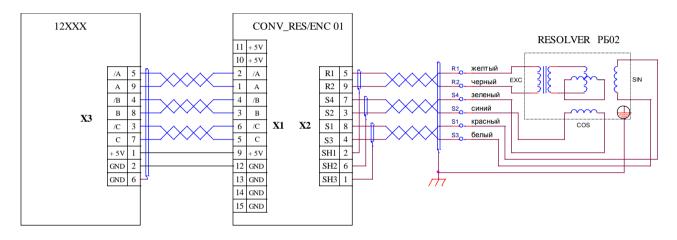


Рисунок 6 Подключение резольвера PБ02 к тиристорному преобразователю 12XXX

На рисунке 7 показано подключение резольвера PБ02 к тиристорному преобразователю серия 4XXX.

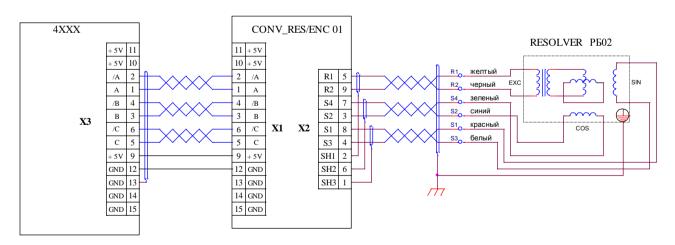


Рисунок 7 Подключение резольвера PБ02 к тиристорному преобразователю 4XXX