# ІНСТРУКЦІЯ КОРИСТУВАЧА

Автономний сонячний інвертор SNA3000 WPV SNA4000 WPV SNA5000 WPV

— Where sun shined

Power always on —



Скачати додаток моніторингу





Android

IOS



# Зміст

| Інформація про інструкцію                       | 01    |
|-------------------------------------------------|-------|
| Призначення                                     | 01    |
| Сфера застосування                              | 01    |
| Цільова група                                   | 01    |
| Інструкція з техніки безпеки                    | 01    |
| 1. Вступ                                        | 02    |
| 1.1 Особливості інвертора                       | 02    |
| 1.2 Інтерфейс інвертора                         | 03    |
| 1.3 Комплектація                                | 04    |
| 2. Встановлення інвертора                       | 04    |
| 2.1 Підготовка перед встановленням              | 04    |
| 2.2 Монтаж                                      | 06    |
| 2.3 Підключення акамулятора                     | 07    |
| 2.3.1 Підключення кабелю живлення акамулятора   | 07    |
| 2.3.2 Підключення літієвого акамулятора         | 07    |
| 2.4 Підключення змінного струму                 | 08    |
| 2.5 Підключення PV                              | 09    |
| 2.6 Підключення генератора                      | 10    |
| 2.7 Контроль сигналу сухого контакту            | 11    |
| 2.8 Паралельне підключення                      | 12-14 |
| 2.9 Живлення інвертора та включення функції EPS | 14    |

| 3. Робочі режими                            | 15    |
|---------------------------------------------|-------|
| 3.1 Режими автономного інвертора            | 15-16 |
| 3.2 Опис налаштувань робочих режимів        | 17-20 |
| 4. РК-дисплей та налаштування               | 21    |
| 4.1 LED Дисплей                             | 21    |
| 4.2 LCD Дисплей                             | 21-22 |
| 4.3 Відображення статусу інвертора          | 22-23 |
| 4.4 Налаштування через РК-дисплей           | 23-31 |
| 5. Система моніторингу                      | 32    |
| 6. Технічні характеристики                  | 32-34 |
| 7. Усунення несправностей та список помилок | 35-36 |

# Інформація про інструкцію

### Призначення

Дана інструкція призначена для пристроїв: SNA3000 WPV/SNA4000 WPV/SNA5000 WPV

## Сфера застосування

Інструкція призначена для встановлення, експлуатації та усунення несправностей інвертора, будь ласка, уважно прочитайте інструкцію перед експлуатацією.

## Цільова група

Кваліфіковані особи та кінцеві користувачі повинні володіти наступними навичками:

- Знання про роботу даного інвертора
- ٠ Знання з питань пов'язаних зі встановленням та електробезпекою
- Знання з монтажута та введення в експлуатацію електричних установок ٠
- Знання діючих місцевих стандартів •

## Інструкція з техніки безпеки

ПОПЕРЕДЖЕННЯ: Даний розділ містить важливі інструкції з техніки безпеки та експлуакатації. Прочитайте та зберігайте інструкцію для подальшого використання.

- Всі операції та підключення повинні виконуватися кваліфікованими особами.
- Перед використанням пристрою прочитайте всі інструкції та попереджувальне маркування на інверторі. Будь-яка шкода спричинена неналежною експлуатацією не покривається гарантією.
- Вся електроустановка повинна відповідати місцевим стандартам електробезпеки.
- Не розбирайте інвертор. Віднесіть його у кваліфікований сервісний центр, коли потрібне обслуговування або ремонт, не правильне повторне збирання може призвести до ураження електричним струмом або пожежі. Не відкривайте кришку інвертора і не змінюйте будь-які компоненти без дозволу Luxpower, інакше інвертор не буде покриватися гарантією.
- Щоб зменшити ризик ураження електричним струмом, відключіть всі з'єднання, перш ніж виконувати технічне обслуговування. Вимкнений пристрій не гарантує повної безпеки.
- Щоб зменшити ризик отримання травм, заряджайте акамулятори лише глибокого циклу, інші типи акумуляторів можуть вибухнути спричинивши тілесні пошкодження.
- НІКОЛИ не заряджайте заморожену акумуляторну батарею.
- Для оптимальної роботи дотримуйтесь необхідних специфікацій розміру провідника та номіналу вимикача.
- Неухильно дотримуйтесь процедури встановлення, якщо ви хочете відключити клеми змінного або постійного струму, див. пункт ВСТАНОВЛЕННЯ ІНВЕРТОРА
- ІНСТРУКЦІЯ ПО ЗАЗЕМЛЕННЮ даний пристрій має бути підключенний до системи заземлення, обов'язково дотримуйтесь місцевих вимог та правил при встановленні.
- НІКОЛИ не призводьте до короткого замикання на входах постійного та змінного струму. Не підключайтесь до мережі, коли відбулося коротке замикання по постійному струмі.

# 1. Вступ

# 1.1 Особливості інвертора



Акумуляторна батарея

Серія SONAR - це багатофункціональний сонячний інвертор з наступними особливостями:

- Використовується для автономного та резервного живлення, власного споживання та генерації в мережу.
- Має 2 МРРТ контролера з діапазоном напруги 120В~385В.
- Номінальна потужність 5 кВт з коефіцієнтом потужності 1.
- Здатний працювати, як з акумулятороми та і без них, в автономному режимі та з мережею.
- Сумісна робота з генератором та здатність дистанційно керувати їм. •
- Електроенергія від сонячних паналей та мережі може спільно покривати навантаження.
- Функція паралельного підключення дає можливість підключити до 10 інверторів. •
- Підтримка інформаційного зв'язку з Li-ion акумуляторами через порти CAN/RS485.
- Віддалений моніторинг Wi-Fi, налаштування та оновлення прошивки через вебсайт або безкоштовний додаток для IOS/Anfroid.

#### 1.2 Інтерфейс інвертора





#### 1.3 Комплектація

Перед встапновленням, будь ласка, переконайтесь, що всередині упаковки нічого не пошкоджено. В упаковці повинні бутинаступні товари:



#### Зберігання інвертора

Інвертор повинен зберігатись належним чином, якщо він не встановлений, умови зберігання повинні відповідати як на малюноку нижче.

#### УВАГА!

a) Інвертор та його компоненти повинні зберігатись в оригінальній упаковці.

б) Температура зберігання повинна бути
 в межах -25~60°С з вологісттю 0~85%.

 в) Упаковка повинна бути розташована вертикально, кількість пакувальних шарів не більше 6.

 г) Не наражайте упаковку інвертора на впливв прямих сонячних променів, дощу та появі корозії.



# 2. Встановлення інвертора

#### 2.1 Підготовка перед встановленням



Будь ласка підготуйте вимикачі та кабелі перед установкою.

1. Підключення акумуляторів: для забезпечення безпеки роботи і дотримання правил потрібно встановити окремий вимикач постійного струму від перенавантаження по струму або відключення акумулятора від інвертора. Рекомендована ємність акумултора становить 150-200А\*ч. Рекомендована специфікація вимикача постійного струпу-150А/60В, рекомендований кабель акумулятора і розмір накіненника:

| рекомендо | зании каос.    | ID arymy).     | и пора проз                  | мір накі | нечник                                           | a    |                  |       |     |
|-----------|----------------|----------------|------------------------------|----------|--------------------------------------------------|------|------------------|-------|-----|
| Модель    | Сила<br>струму | Ємність<br>АКБ | Розміри Кабель<br>кабелю мм2 |          | озміри<br>кабель Розміри<br>кабель D (мм) L (мм) |      | Сила<br>закрутки |       |     |
| SNA5000   | 1104           | 20041          | 1*2AWG                       | 38       | 6.4                                              | 39.2 | 2.3HM            |       |     |
| WPV       | IIUA           | ZUUAH          | 2*6AWG                       | 28       | 6.4                                              | 33.2 | 2~311M           | ب للل | نلا |

2. Підключення змінного струму: будь ласка, встановіть окремий вимикач змінного струму між інвертором і вхідним джерелом живлення змінного струму, інвертором і навантаженням змінного струму. Це забезпечить надійне відключення інвертора під час технічного обслуговування і повний захист від перевантаження по струму на вході змінного струму. Рекомендована вимикач змінного струму становить 40А, рекомендований розмір кабелю вводу/виводу змінного струму/ GEN для кожного інвертора.

| Модель     | Розміри кабелю | Кабель(мм2) | Сила закрутки |  |  |
|------------|----------------|-------------|---------------|--|--|
| SNA5000WPV | 10AWG          | 6           | 1.2 Нм        |  |  |

3.Підключення PV: будь ласка, встановіть окремо автономній вимикач постійного струму між інвертором і фотомодулями. Рекомендований вимикач постійного струму становить 600В/20А. Для забезпечення безпеки та ефективної роботи системи дуже важливо використовувати відповідний кабель для підключення фотомодулю. Щоб знизити ризик отримання травм, будь ласка, використовуйте правильний розмір кабелю, як показано в таблиці нижче.

| Модель     | Розміри кабелю | Кабель(мм2) | Сила закрутки |  |  |
|------------|----------------|-------------|---------------|--|--|
| SNA5000WPV | 1x12AWG        | 4           | 1.2 Нм        |  |  |

4. Перед підключенням проводки, будь ласка, зніміть нижню кришку, відкрутивши 3 гвинти, як показано нижче.



### 2.2 Монтаж

Зверніть увагу : перед встановленням зверніть увагу на наступні пункти:

- Кріпити на твердій поверхні
- Не встановлюйте інвертор на легкозаймисті і будівельні матеріали.
- Для правильної циркуляції повітря та розсіювання тепла необхідно забезпечити мінімальну відстань інших предметів від інвертора з боків на 20 см та знизу, зверху по 50 см.
- Температура навколишнього середовища повинна бути від 0 С до 55 С для забезпечення оптимальної роботи.
- Інвертор повинен монтуватись вертикально на стіні.

#### Етапи монтажу пристрою

**Етап 1.** Використовуйте наступний монтажний кронштейн, як шаблон, щоб відзначити положення 4 отворів, потім просвердліть 8 мм отвори і переконайтесь, що глибина отворів перевищує 50 мм. **Етап 2.** Встановіть розширювальні дюбеля в отвори і затягніть їх, потім за допомогою розширювальних гвинтів (упакованих разом з розширювальними дюбелями) встановіть і закріпіть настінний кронштейн на стіні.

**Етап 3.** Встановіть інвертор на настінний кронштейн і зафіксуйте його за допомогою захисних гвинтів.



### 2.3 Підключення акумулятора

### 2.3.1 Підключення кабелю живлення акумулятора

Примітка: для свинцево-кислотного акумуляторарекомендований струм заряду 0,2 С (С - ємність акумулятора)

1. Буль ласка, виконайте наступні дії для підключення акумулятора:

2. Зберіть кільцеву клему акумулятора відповідно до рекомендованого кабелю акумулятора і розміру клеми.

3. Підключіть всі акумуляторні блоки в міру необхідності. Рекомендується підключити акумулятор ємністю не менше 200 А\*ч для SNA5000 WPV.

4. Вставте кільцеву клему безпосередньо в роз'єм для акумуляторів на інверторі і переконайтесь, що болти затягнуті з крутним моментом 2~3 Нм. Переконайтесь, що полярність батареї правильно підключена та клеми щільно прикручені до клем інвертора.

### 2.3.2 Підключення літієвих акумуляторів

При виборі літієвого акумулятора для SNA 5000 WPV, будь ласка, переконайтесь, що BMS батареї сумісна з інвертором Luxpower. Буль ласка, перевірте список сумісних пристроїв на веб-сайті Luxpower.

#### УВАГА! Використання несумісних АКБ знімає інвертор з гарантії

Будь ласка, виконайте наступні дії для підключення літієвого акумулятора.

1. Підключіть кабель живлення між інвертором і акумулятором.

2. Підключіть кабель зв'язку CAN або RS485 між інвертором та акумулятором. Якщо ви не маєте кабель зв'язку від виробника інвертора або виробника акумулятора, будь ласка, зробіть кабель відповідно до визначених пінів.

3. Для інформаційного зв'язку між BMS

акумулятору та інвертором, ви повинні встановити тип акумулятору "Li-ion" в меню під номером "03" на екрані інвертора та обрати потрібне найменування акумулятора. Користувачі також можуть обрати тип акумулятору та виробника через систему моніторингу.

| MPPT485  |       |          |
|----------|-------|----------|
|          | Red   | Color Sw |
|          | Pin   | RS 485   |
|          | 1     | RS 48    |
|          | 2     | RS 48    |
|          | 3     |          |
|          | 4     |          |
|          | 5     |          |
| Паралоль | 6/7/8 |          |

| Red  | Color Switch       | 1 2  | Blue Color Switch |             |          |  |  |
|------|--------------------|------|-------------------|-------------|----------|--|--|
| Pin  | RS 485 port CAN po |      | Pin               | RS 485 port | CAN port |  |  |
| 1    | RS 485B            |      | 1                 | RS 485B     |          |  |  |
| 2    | RS 485A            |      | 2                 | RS 485A     |          |  |  |
| 3    |                    | CANL | 3                 |             |          |  |  |
| 4    |                    | CANH | 4                 |             | CANH     |  |  |
| 5    |                    |      | 5                 |             | CANL     |  |  |
| /7/8 |                    |      | 6/7/8             |             |          |  |  |



### 2.4 Підключення змінного струму

#### ОБЕРЕЖНО!!

- Є дві клемні колодки з маркуванням "І N" та "OUT". Буль ласка, підключить правильно вхід та вихід відповідно.

- Обов'язково підключіть провід змінного струму з правильною полярністю. Якщо дроти

L і N з'єднати у зворотному напрямку, це може привести до короткого замикання при паралельній роботі цих інверторів.

Будь ласка, виконайте наступні дії, щоб реалізувати підключення вводу-виводу змінного струму.

1. Перед підключенням вводу-виводу змінного струму обов'язково спочатку відключіть джерела постійного струму від інвертора

2. Зніміть ізоляцію з проводу на 10 мм для шести провідників та укоротіть на 3 мм.

3. Вставте вхідні дроти змінного струму відповідно до полярностей, зазначених на клемній колодці, і затягніть гвинти клем.

Обов'язково спочатку підключіть захисний провідник РЕ.

4. Вставте вихідні дроти змінного струму відповідно до полярностей, зазначених на клемній колодці, і затягніть гвинти клем.

Обов'язково спочатку підключіть захисний провідник РЕ.

5. Переконайтесь, що кабелі надійно приєднані до клем.

🕀 — Земля (Жовто-зелений)

L-Фаза (коричневий або чорний)

N →Нейтраль(синій)





### 2.5 Підключення PV

1. Зніміть ізоляцію з проводу на 10 мм для позитивних і негативних провідників.

2. Перевірте правильну полярність з'єднувального кабелю від фотоелектричних модулів і вхідних роз'ємів на інверторі.

3. Підключіть позитивний полюс (+) з'єднувального кабелю до позитивного полюса (+) вхідного роз'єму PV на інверторі. Підключіть негативний полюс (-) з'єднувального кабелю до негативного полюса (-) вхідного роз'єму PV на інверторі.

4. Переконайтеся, що кабелі надійно приєднані.

5. Нарешті, після підключення всієї проводки, будь ласка, встановіть нижню кришку назад, закрутивши два гвинти, як показано вище.



### 2.6 Підключення генератора

L – Фаза (коричневий або чорний) N Нейтраль (синій)

1. Перед підключенням генератора обов'язково відключіть живлення від інвертора.

2. Зніміть ізоляційню провідника на 10 мм для двох провідників.

3. Вставте дроти L і N відповідно до полярностей, зазначених на клемній колодці, і затягніть гвинти клем.



Всі прилади luxpower можуть працювати з генератором.

- Користувачі можуть підключати вихід генератора до автономних інверторів на вхідний термінал GEN.

- Будь ласка, придбайте зовнішній блок управління для дистанційного включення / вимикання генератора (при необхідності генератор повинен підтримувати функцію сухого контакту).

- Генератор буде автоматично запущений, коли напруга акумулятора буде нижче порогового значення або є сигнал на заряд акумулятора від BMS. Коли напруга перевищує значення налаштування заряду від змінного струму, інвертор зупинить генератор.

- А кумулятор заряджається, коли генератор включений. Також генератор живить вихід змінного струму, щоб покрити все навантаження.



- Якщо буде одночасне підключення генератора та електромережі, інвертор буде використовувати енергію з електромережі.

Рекомендована потужність генератору

| К-сть підключених паралельного інверторів | Потужність |
|-------------------------------------------|------------|
| Один інвертор                             | >10 кВт    |
| Два інвертори                             | >15 кВт    |

Можливо підключити 2-3 інвертори в однофазну або трифазну систему в якій інвертори паралельно працюватимуть на заряд акумуляторних батарей від генератора. Ефективність роботи залежить від характеру навантаження на параметрів генератора.

#### 2.7 Контроль сигналу сухого контакту

Dry port (NO2, COM2, NC2) може використовуватися для подачі сигналу на зовнішній пристрій, коли напруга акумулятора досягає попереджувального рівня. Вхід GEN (NO1, COM1, NC1) може використовуватися для ввімкнення генератора, який може заряджати акумулятор.

| Статус<br>приладу |              | Стан                                                                            | Dry port GEN<br>N02 COM2 01 COM1 | Dry port GEN<br>N02 COM2 N01 COM1 |
|-------------------|--------------|---------------------------------------------------------------------------------|----------------------------------|-----------------------------------|
|                   |              |                                                                                 | NO2 & COM2                       | NO1 & COM1                        |
| Вимкнений         | Інвертор вим | икнений без живлення навантаження                                               | Відкритий                        | Відкритий                         |
|                   | Без          | Напрута акумулятора < напруги<br>попередження                                   | Закритий                         | Закритий                          |
| Увімкнений        | мережі       | Напруга акумулятора > налаштованої велечини<br>або напруги підтримуючого заряду | Відкритий                        | Відкритий                         |
| , bisikiteliinin  | 3 маражаю    | Напруга акумулятора < напруги<br>попередження                                   | Закритий                         | Відкритий                         |
|                   | 3 мережею    | Напруга акумулятора > налаштованої велечини<br>або напруги підтримуючого заряду | Відкритий                        | Відкритий                         |

Примітка: NO--- Номально відкритий [Dr

ий [Dry ] максимальні параметри реле - 250В 5А АС [GEN] максимальні параметри реле -250В 5А АС

#### 2.8 Паралельне підключення

Інвертор серії SNA підтримує до 10 інверторів для створення однофазної паралельної системи або трифазної паралельної системи.

Для налаштування паралельної системи виконайте наступні кроки

Крок 1. Підключення кабелів: підключіть систему, як показано нижче:





Крок 3. Н алаштуйте моніторинг, додайте всі W і-Fi модулі на одну станцію. Користувачі можуть здійснити дану процедуру зайшовши на веб-сайт моніторингу та відкривши пункт меню C onfiguration-> Stations->Plant Management->add datalog.

| LUIOPOWER |   | 🕝 Monito    | r 🕕 Data  | 🔎 Configuratio  | n 🛄 Ove      | rview 🗋 M |                      |                   | User Center        |
|-----------|---|-------------|-----------|-----------------|--------------|-----------|----------------------|-------------------|--------------------|
| Stations  | ŀ | ♣ Add Sta   | tion      |                 |              |           |                      | Search by station | name X             |
| Datalogs  |   | Plant name  | Installer | End User        | Country      | Timezone  | Daylight saving time | Create date       | Action             |
| Inverters | 1 | Genesis     |           | Aspergo Install | South Africa | GMT+2     | No                   | 2019-03-14        | Plant Management 🔻 |
|           | 2 | Butler Home | Elangeni  | johnbutler      | South Africa | GMT+2     | No                   | 2019-03-25        | Plant Management 🔻 |
| Users     | 3 | Office      |           |                 | South Africa | GMT+2     | No                   | 2019-06-03        | Plant Management 🔻 |
|           | 4 | Cronje Home | Broomhead | cronje          | South Africa | GMT+2     | No                   | 2019-07-16        | Plant Management 🔻 |

Крок 4. Увімкніть пункт меню "Battery Shared", якщо система використовує один загальний акумулятор, в іншому випадку вимкніть дану функцію.

Крок 5. Налаштуйте систему, як паралельну групу, в системі моніторингу.

| LU⊗POWER™         |   | 🕝 Monii       |          | 📙 Data      | 🧢 Confi      |               |       | Overview       | 🗋 Mainta        |             |               |             |          |          |
|-------------------|---|---------------|----------|-------------|--------------|---------------|-------|----------------|-----------------|-------------|---------------|-------------|----------|----------|
| Stations Overview |   | Station Nar   | ne       |             |              |               |       |                |                 |             | Search by     | inverter SN | ×        |          |
| Device Overview   |   | Serial number | Status   | Solar Power | Charge Power | Discharge Pow | Load  | Solar Yielding | Battery Dischar | Feed Energy | Consumption E | Plant name  | Parallel | Action   |
|                   | 1 | 0272011008    | 🕗 Normal | 228 W       | 42 W         | 0 W           | 182 W | 215.3 kWh      | 39.6 kWh        | 0 kWh       | 551.2 kWh     | Dragonview  | A-1      | Parallel |
|                   | 2 | 0272011011    |          | 35 W        | 32 W         | 0 W           | 0 W   | 158.7 kWh      | 21.1 kWh        | 0 kWh       | 160.5 kWh     | Dragonview  | A-2      | Parallel |
|                   | 3 | 0272011012    |          | 1 kW        | 129 W        | 0 W           | 1 kW  | 170.3 kWh      | 49.9 kWh        | 0 kWh       | 434.5 kWh     | Dragonview  | A-3      | Parallel |
|                   | 4 | 0272011017    |          | 79 W        | 48 W         | 0 W           | 106 W | 99 kWh         | 85.6 kWh        | 0 kWh       | 257.1 kWh     | Dragonview  | A-4      | Parallel |

Для отримання більшої інформації, щодо паралельної системи, будь ласка, відвідайте https://www.luxpowertek.com/download/ або зверніться на пошту support@atmosfera.ua для отримання технічної підтримки.

### 2.9 Живлення інвертора та включення функції EPS



1.Вимикач Power: Вимикач живлення інвертора.

2.Вимикач EPS Output: Використовується для керування виходу навантаження. Після підключення, будь ласка, увімкніть обидва вимикачі. Користувачі можуть вимкнути функцію EPS для вимкнення навантаження при необхідності.

Крок 2. Будь ласка, переведіть комунікаційний РІΝ в положення ОΝ для першого та кінцевого інвертора.



Максимальна кількість підключених інверторів 10, отже 2<n<10

# 3.Робочі режими

## 3.1 Режими автономного інвертора:

| Bypass Mode        | Навантаження працює<br>працює від<br>електромережі                                                                                                                     |   | AC Charge        | <ol> <li>Акумулятор заряджається від<br/>електромережі або від генератора.</li> <li>Коли АКБ розряджені та<br/>вимкненні, то електромережа<br/>здатна автоматично увімкнути їх.</li> </ol> |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PV Charge Bypass   | Фотомодулі<br>заряджають АКБ, поки<br>навантаження працює<br>від електромережі                                                                                         |   | PV+AC charge     | Електромережа та фотомодулі<br>заряджають АКБ. Живлення<br>навантаження відбувається від<br>електромережі або генератора                                                                   |
| BAT Grid off       | Навантаженя працює<br>від акумулятора                                                                                                                                  |   | PV Grid off      | Фотомодулі можуть живити<br>навантаження без<br>акумуляторів                                                                                                                               |
| PV+BAT Grid off    | Навантаженя працює<br>від акумулятора та<br>фотомодулів                                                                                                                |   | PV charge Gridon | Фотомодулі живлять<br>навантаження та<br>заряджають АКБ. Надлишок<br>електроенергії генерується в<br>електромережу.                                                                        |
| PV Charge          | <ol> <li>Коли вимикач EPS вимкнений<br/>інвертор може заряджати тільки<br/>акумулятори.</li> <li>Коли АКБ розряджені та<br/>вимкненні, то фотомодулі здатні</li> </ol> | - | PV+BAT Gridon    | Живлення навантаження від<br>фотомодулів та АКБ.<br>Якщо не вистачає потужності від<br>фотомодулів та акумулятора, то<br>електромережа покриє<br>недостачу потужності                      |
| PV Charge+Grid off | автоматично увімкнути їх.<br>Фотомодулі заряджають<br>акумулятор та покривають<br>навантаження                                                                         |   | PV Gridon        | Фотомодулі живлять<br>навантаженя, а надлишок<br>електроенергії генерується<br>в мережу                                                                                                    |

# 3.2 Опис налаштувань робочих режимів

| Статус                         | Налаштування №1                       | Налаштування №2                                                                              | Налаштування №3                                            | Робота та опис режимів                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Відсутність<br>змінного струму | NA                                    | NA                                                                                           | NA                                                         | Режим - Off grid<br>Якщо P_Solar>=P_load, фотомодулі використовуються для живлення навантаження<br>та зарядки акумулятора.<br>Якщо P_Solar <p_load, акб="" будуть="" живити="" навантаження="" разом,<br="" та="" фотомодулі="">система буде розряджати АКБ до виставленого рівня Cut Off Voltage/SOC</p_load,>                                                                                                                                                                                                                                                                            |
|                                |                                       | AC First - Увімкнено                                                                         | NA                                                         | <ul> <li>Режим - Hybrid (charge first)</li> <li>1. В першу чергу електроенергія від фотомодулів буде заряджати акумулятор, а електромережа буде живити навантаження.</li> <li>2. Якщо сонячної електроенергії більше, ніж потрібно, для заряджання акумулятора, тоді надлишок електроенергії буде живити навантаження разом з електромережею.</li> <li>3. Якщо сонячної електроенергії більше, ніж потрібно, для заряджання акумулятора та навантаження, тоді надлишок електроенергії буде генеруватися в мережу, якщо функція "Export to Grid" - Увімкнена.</li> </ul>                    |
|                                | PV&AC Take Load                       |                                                                                              | Вибрати AC Charge -<br>According to Time                   | Режим - Hybrid (charge first)+AC Charge<br>Якщо сонячної електроенергії недостатньо для заряджання акумулятора, тоді<br>електромережа розпочне заряджання акумулятора.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Змінний струм<br>підключений   | Jointly - Увімкнено                   | AC Charge та AC Charge Time - Увімкнено                                                      | Вибрати AC Charge -<br>According to Battery<br>Voltage/SOC | Режим - Hybrid (charge first)+AC Charge<br>Якщо сонячної електроенергії недостатньо для заряджання акумулятора та<br>напруга(SOC) нижча ніж виставлений параметр "AC Charge Start Battery<br>Voltage(SOC)", тоді електромережа розпочне заряджання акумулятора.<br>Електромережа припинить заряджання акумулятора, коли напруга або SOC<br>вища виставленого параметра "AC Charge End Battery Voltage(SOC)".                                                                                                                                                                               |
|                                |                                       | <ol> <li>AC First time - Вимкнено</li> <li>AC Charge та AC Charge Time - Вимкнено</li> </ol> | NA                                                         | Режим - Hybrid (load first)<br>1. В першу чергу електроенергія від фотомодулів буде живити навантаження.<br>2. Якщо сонячної електроенергії менше, ніж потрібно для навантаження,<br>акумулятор розпочне розряджатися та живити навантаження, поки напруга або<br>SOC на акумуляторі не стане нижче виставленого параметра "EOD Voltage(SOC)".<br>3. Якщо сонячної електроенергії більше, ніж потрібно для навантаження, надлишок<br>електроенергії буде використано для заряджання акумулятора, якщо електроенергії<br>буде все ще забагато, тоді вона буде генеруватися в електромережу. |
|                                |                                       | AC First - Увімкнено                                                                         | NA                                                         | Режим - Bypass<br>Мережа живить навантаження, а фотомодулі заряджають акумулятор.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                | PV&AC Take Load<br>Jointly - Вимкнено | PV&AC Take Load                                                                              | Вибрати AC Charge -<br>According to Time                   | Режим - Bypass+AC charge battery<br>Електроенергія від фотомодулів буде використана для заряджання акумулятора, а<br>електромережа буде живити навантаження та заряджати акумулятор протягом<br>виставленого параметра "AC charge time", якщо електроенергії від фотомодулів<br>буде недостатньо.                                                                                                                                                                                                                                                                                          |
|                                |                                       | AC Charge fa AC Charge fillite - 9 BlmkHeho                                                  | Вибрати AC Charge -<br>According to Battery<br>Voltage/SOC | Режим - Bypass+AC charge battery<br>Електроенергія від фотомодулів буде використана для заряджання акумулятора, а<br>електромережа буде живити навантаження та заряджати акумулятор, коли<br>напруга(SOC) на акумуляторі нижча ніж виставлений параметр "AC Charge Start<br>Battery Voltage(SOC)". Електромережа припинить заряджання акумулятора, коли<br>напруга або SOC вища виставленого параметра "AC Charge End Battery<br>Voltage(SOC)".                                                                                                                                            |
|                                |                                       | <ol> <li>AC First time- Вимкнено</li> <li>AC Charge та AC Charge Time - Вимкнено</li> </ol>  | NA                                                         | Режим - Off grid<br>Якщо P_Solar>=P_load, фотомодулі використовуються для живлення<br>навантаження та зарядки акумулятора.<br>Якщо P_Solar <p_load, акб="" будуть="" живити="" навантаження="" разом,<br="" та="" фотомодулі="">система буде розряджати АКБ до виставленого рівня EOD Voltage/SOC</p_load,>                                                                                                                                                                                                                                                                                |

1. SONAR може працювати як традиційний автономний інвертор або як гібридний інвертор. Коли параметр PV&AC Take Load Jointly - вимкнено, інвертор буде працювати як традиційний автономний інвертор, в іншому випадку він буде працювати як гібридний.

| Hybrid Setting                         |                         |     |     |
|----------------------------------------|-------------------------|-----|-----|
| PV&AC Take Load Jointly Enable Disable | Discharge Current Limit | 300 | Set |
| Export to Grid Enable Disable          | Export Power Percent(%) | 0   | Set |

2. Робота в якості традиційного автономного інвертора. У цій ситуації інвертор або використовує (сонячні панелі + АКБ) для живлення навантаження, або використовує мережу для живлення навантаження. Налаштування:

| Application Setting                                      |                         |               |                                                              |    | $\sim$                                                               |
|----------------------------------------------------------|-------------------------|---------------|--------------------------------------------------------------|----|----------------------------------------------------------------------|
| EPS Voltage Set(V)                                       | 230                     | Set           | EPS Frequency Set(Hz)                                        | 50 | ▼ Set                                                                |
| AC Input Range                                           | 0: APL(Utility Range90v | Set           |                                                              |    |                                                                      |
| AC First<br>AC first Start Time 1<br>AC first End Time 1 | 00 : 00 Set             | AC fi<br>AC f | rst Start Time 2 14 : 30 Set<br>first End Time 2 15 : 00 Set | ]  | AC first Start Time 3 16 : 30 Set<br>AC first End Time 3 16 : 40 Set |

AC First: протягом встановлених меж часу, система спочатку буде використовувати електричну мережу для живлення навантаження, а потім використовувати сонячну електроенергію для зарядки акумулятора. Якщо акумулятори заряджені, сонячна електроенергія може бути втрачена. Коли час заряду акумулятора вийде за встановлені межі, система буде використовувати електроенергію з акумулятора та від фотомодулів для живлення навантаження до тих пір, поки напруга / SOC на акумуляторі не опуститься нижче значення Cut Off Voltage/SOC.

| Discharge Setting                |                   |     |                              |    |     | $\sim$ |
|----------------------------------|-------------------|-----|------------------------------|----|-----|--------|
| Discharge Control                | According to SC 🔻 | Set |                              |    |     |        |
| Battery Warning Voltage          | 44                | Set | Battery Warning SOC          | 20 | Set |        |
| Battery Warning Recovery Voltage | 46                | Set | Battery Warning Recovery SOC | 60 | Set |        |
| Discharge Cut-off Voltage        | 45                | Set | Discharge Cut-off SOC        | 15 | Set |        |
| On Grid EOD Voltage(V)           | 56                | Set | On Grid EOD SOC(%)           | 30 | Set |        |

#### 3. Працює як гібридний інвертор.

#### Налаштування:

| Application Setting                                  | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sim$                                          |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| EPS Voltage Set(V)                                   | 230     V     Set     EPS Frequency Set(Hz)     50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ▼ Set                                           |
| AC Input Range                                       | 0: APL(Utility Range90 v) Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| AC First<br>AC first Start Time<br>AC first End Time | a 1 00       : 00       Set       AC first Start Time 2 14       : 30       Set       AC first Start | urt Time 3 16 : 30 Set<br>nd Time 3 16 : 40 Set |

3.1 AC First: протягом встановлених меж часу, система спочатку буде використовувати електромережу для живлення навантаження, а електроенергія від сонячних панелей буде використовуватися для зарядки акумулятора. Якщо сонячної електроенергії більше, ніж потрібно, для заряджання акумулятора, тоді надлишок електроенергії буде живити навантаження.

Коли час заряду акумулятора вийде за встановлені межі, акумулятор розпочне розряджатися та живити навантаження, поки напруга або SOC на акумуляторі не стане нижче виставленого параметра "EOD Voltage(SOC)" після чого живлення навантаження буде відбуватися від електромережі.

| Disc | narge Setting                |                       |                              |    |     | $\sim$ |
|------|------------------------------|-----------------------|------------------------------|----|-----|--------|
|      | Discharge Control            | According to SC 🔻 Set |                              |    |     |        |
|      | Battery Warning Voltage      | 44 Set                | Battery Warning SOC          | 20 | Set |        |
| Batt | ery Warning Recovery Voltage | 46 Set                | Battery Warning Recovery SOC | 60 | Set |        |
|      | Discharge Cut-off Voltage    | 45 Set                | Discharge Cut-off SOC        | 15 | Set |        |
|      | On Grid EOD Voltage(V)       | 56 Set                | On Grid EOD SOC(%)           | 30 | Set |        |

# 3.2 Export to Grid/Export Power Percent(%): Користувачі можуть включити функцію генерації електроенергії в мережу.

| AC Charge According to 8 🔻 Set AC Charge Battery Current(A) 30 Set                                            |
|---------------------------------------------------------------------------------------------------------------|
|                                                                                                               |
| AC Charge Start Time 1 00 : Disable<br>According to Time<br>According to Battery Voltage when no solar        |
| AC Charge End Time 1 23 : According to Battery SOC when no solar 00 : 00 Set AC Charge End Time 3 16 : 40 Set |
| AC Charge Start Battery Voltage(V) 46.4 Set AC Charge End Battery Voltage(V) 48 Set                           |
| AC Charge Start Battery SOC(%) 20 Set AC Charge End Battery SOC(%) 100 Set                                    |

3.3 Функція AC Charge - вимкнена: система не буде використовувати мережу для зарядки акумулятора (за винятком випадку примусової зарядки Li-ion акб з BMS)

- According to Time: під час налаштування система буде використовувати електромережу для зарядки акумулятора до тих пір, поки батарея не буде повністю заряджена або час заряду акумулятора вийде за встановлені межі.

Ассоrding to Battery Voltage: в залежності від встановленого часу, система буде використовувати електромережу для зарядки акумулятора, якщо напруга акумуляторі нижча ніж виставлений параметр "AC Charge Start Battery Voltage". Електромережа припинить заряджання акумулятора, коли напруга вища виставленого параметра "AC Charge End Battery Voltage". У цей період часу акумулятор не буде розряджатися.
Ассоrding to Battery SOC: в залежності від встановленого часу, система буде використовувати електромережу для зарядки акумулятора, якщо напруга акумуляторі нижча ніж виставлений параметр "AC Charge Start Battery SOC". Електромережа припинить заряджання акумулятора, коли напруга вища виставленого параметр пижча ніж виставлений параметр "AC Charge Start Battery SOC". Електромережа припинить заряджання акумулятора, коли напруга вища виставленого параметра "AC Charge End Battery SOC". У цей період часу акумулятор не буде розряджатися.

### 4.РК-дисплей та налаштування

## 4.1 LED Дисплей

|   | LED інд  | икатор     | Пояснення                                      |
|---|----------|------------|------------------------------------------------|
| 1 |          | Постійнний | Нормальна робота                               |
|   | Зелений  | Блимання   | Швидко: Попередження<br>Повільно: оновлення ПО |
| 2 | Червоний | Блимання   | Несправність на<br>інверторі                   |



## 4.2 LSD Дисплей



| No. | Опис                                   | Зауваження                                                                                                                                                                                                                                                                                                                                           |
|-----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Загальна інформація<br>Область дисплею | У цій області буде відображатися поточний час / дата за замовчуванням<br>(Рік / місяць / день / година / хвилина автоматичне перемикання). При<br>натисканні кнопок Up або Down в цій області буде відображатися<br>інформація про версію прошивки, серійний номер і т. д.<br>Відображення інформації про вибір налаштувань при введенні налаштувань |

| 2 | Вихідна потужність та інші<br>данні                                    | У цій області відображаються дані про напругу PV,<br>потужності та інформацію про налаштування входу PV.                                                                                                                                                                                                           |
|---|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Інформація про АКБ                                                     | В цій області відображається тип акумулятора та марку (літієвий<br>акумулятор). Налаштування свинцево-кислотного акумулятора:<br>номінальна напруга, напруга підтримуючого заряду, напруга<br>відключення, напруга закінчення розряду. Також відображається<br>напруга, SOC та потужність з періодом оновлення 1с. |
| 4 | Роточий статус системи /<br>код налаштування                           | Існує три типи робочого статусу - нормальний, попереджений<br>і несправний. У правій частині цієї області є дисплей з кодом,<br>він буде відображати різний тип коду: код робочого режиму,<br>коду попередження, коду несправності та коду налаштувань.                                                            |
| 5 | Вихідна інформація та дані<br>UPS / EPS                                | Коли функція UPS увімкнена в цій области дисплею буде<br>відображатись інформація про вольтаж, частоту, потужність і<br>т.д. з періодом оновлення 1с.                                                                                                                                                              |
| 6 | Програмування та відсоток<br>вихідної потужності по<br>змінному струму | При оновленні прошивки він буде відображати відповідну<br>інформацію. При вимкненій електромережі ця область<br>буде відображати відсоток максимальної вихідної<br>потужності змінного струму                                                                                                                      |
| 7 | Власне споживання                                                      | Відображається споживання електроенергії в режимі on grid                                                                                                                                                                                                                                                          |
| 8 | Інформація про<br>електромережу та<br>генератор                        | Відображення інформації про електромережу (GRIDA): напруга,<br>частота, вхідна або вихіднапотужність, інформації про<br>генератор (GRIDB): напруга, частота, вхідна потужность, з<br>періодом оновлення 1с.                                                                                                        |
| 9 | Область налаштувань<br>робочого режиму                                 | Підчас налаштовування інвертора SNA5000 через РК-дисплей,<br>в цій області будуть відображатися параметри AC Charge, Force<br>Discharge, Charge First для налаштування робочих режимів.<br>Дана інформація не буде відображатися до і після налаштувань.                                                           |

### 4.3 Відображення статусу інвертора









| 20 18:08:08             | AC Charge Force<br>Charge First Discharge |
|-------------------------|-------------------------------------------|
|                         |                                           |
| Type BAT.Brand          |                                           |
|                         |                                           |
| Normal Waning Faut 1990 |                                           |
|                         |                                           |
|                         |                                           |













## 5. Система моніторингу

- Користувачі можуть використовувати WiFi dongle / WLAN dongle / 4G dongle (Доступно з березня 2021 року для деяких країн) для моніторингу системи. Веб-сайт моніторингу: server.luxpowertek.com - Додаток також доступний в Google Play та Apple APP store (відскануйте QR код, щоб завантажити додаток).

- Будь ласка, завантажте інструкцію налаштування з веб-сайту: https://www.luxpowertek.com/download/ Налаштувати моніторинг можна за допомогою:

#### 1. Wi-Fi Quick Gaidance

Коротка інструкція з налаштування та пароль для модуля Wi-Fi можна знайти у коробці з Wi-Fi модулем 2. Monitoring system setap for Distributors Ta

#### Monitoring system setap for endusers.

Реєстрація на системі моніторингу, налаштування пароля Wi-Fi модуля та налаштування локального моніторингу.

3. Lux\_Monitor\_UI\_Introduction

Інструкція по інтерфейсу моніторинга 4.WebsiteSettingsGaidance

Інструкція по інтерфейсу веб-сайту для автономного інвертора.

#### 6. Технічні характеристики

| Гаолиця Госновні ха                                                                                                           | арактеристики                                                                                                                                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Модель інвертора                                                                                                              | SNA5000WPV/SNA4000WPV/SNA300WPV                                                                                                              |  |  |
| Форма вхідної напруги                                                                                                         | Синусоїдальна (мережа або генератор)                                                                                                         |  |  |
| Номінальна вхідна напруга                                                                                                     | 230 B                                                                                                                                        |  |  |
| Нижня напруга відключення                                                                                                     | 170 B~7 B                                                                                                                                    |  |  |
| Нижня напруга повернення в роботу                                                                                             | 180 B~7 B                                                                                                                                    |  |  |
| Верхня напруга відключення                                                                                                    | 280 B~7 B                                                                                                                                    |  |  |
| Верхня напруга повернення в роботу                                                                                            | 270 B~7 B                                                                                                                                    |  |  |
| Максимальна вхідна напруга АС                                                                                                 | 280 B                                                                                                                                        |  |  |
| Номінальна вхідна частота                                                                                                     | 50 Гц / 60 Гц(автопідбір)                                                                                                                    |  |  |
| Захист короткого                                                                                                              | Програмний захист, коли відбувається критичний<br>розряд при режими GridOff та захист від короткого<br>замикання при наявності електромережі |  |  |
| замикання на виході                                                                                                           |                                                                                                                                              |  |  |
| Час перетворення                                                                                                              | <20 мс (Single) <30мс (Parallel)                                                                                                             |  |  |
| Зниження вихідної потужності: Коли вхідна<br>напруга змінного струму знижується до 170 В,<br>вихідна потужність буде знижена. | Вихідна потужність буде знижена на 20% від номінальної потужності                                                                            |  |  |

# o w Battery Level(SOC)

Тоблица 1 Основні узрактеристики

#### BA 19310175 9532004127 Solar Yielding Battery Discharging 0.0 kWh 0.0 kWh Today Yielding Today Discharging 50.1 kWh 300.8 kWh Total Yielding Total Discharging Feed-in Energy Consumption 0.0 kWh 0.0 kWh Today Export Today Usage 255.3 kWh 77.1 kWh Total Export Total Usage 0 W Notice 0 W PV Powe Battery Powe 0 W Ē Backup Power(EPS)

**Local Monitor** 

| Таблиця 2 Технічні характеристики інвертора                         |                  |                                             |                                                        |                                      |                                                |
|---------------------------------------------------------------------|------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------|------------------------------------------------|
| Номінали вихідної потужності                                        |                  |                                             | 5кВА/5кВт   4кВА/4кВт   3кВА/3кВт                      |                                      |                                                |
| Тип вихідної напруги                                                |                  |                                             | Чиста синусоїда                                        |                                      |                                                |
| Вихідний діапазон напруг                                            |                  |                                             | 208 B/ 220 B/ 230 B/ 240 B~5%                          |                                      |                                                |
| Вихідна частота                                                     |                  |                                             | 50 Гц / 60 Гц                                          |                                      |                                                |
| Макс. ККД                                                           |                  |                                             | 93 %                                                   |                                      |                                                |
| Захист від перевантаження                                           |                  |                                             | 5с>150% навант.; 10с 110%~150% навант.                 |                                      |                                                |
| Імпульсне перевантаження                                            |                  |                                             | 2 номільні потужності на протязі 5 с.                  |                                      |                                                |
| Діапазон напруги а                                                  | кумулятор        | a                                           | 46,6 B-60 B (Li-ion) 38,4 B-60 B (Lead_Acid)           |                                      |                                                |
| Верхня напруга выдключення                                          |                  |                                             | 59 B (Li-ion) 60 B (Lead_Acid)                         |                                      |                                                |
| Верхня напруга повернення в роботу                                  |                  |                                             | 57,4 B (Li-ion) 58 B (Lead_Acid)                       |                                      |                                                |
| Напруга АКБ при,                                                    | Навантаження<20% |                                             | 44,0 В (налаштовується)                                |                                      |                                                |
| якій з'являється                                                    | 20%<Навант. <50% |                                             | Критична напруга, навантаження<20%-1,2 В               |                                      |                                                |
| попередження                                                        | Навантаж         | ення >50%                                   | Критична напруга, навантаження<20%-3,6 В               |                                      |                                                |
| Нижня напруга поверне                                               | ення в<br>грумі  | Нижи                                        | ня попереджувальна напруга при різному<br>итаженні +2В |                                      |                                                |
|                                                                     | (p)              | Навантаження <20% 42,0 Вdc (налаштовується) |                                                        | налаштовується)                      |                                                |
| Мінімальна напруга                                                  |                  | 20%<Нава                                    |                                                        | ·/ <50% Напруга вимкнення, <20%-1,2В |                                                |
| постійному струмі                                                   |                  | Навант <5                                   | 0%                                                     | 6 Напруга вимкнення, <20%-3,6В       |                                                |
| Мінімальна напруга<br>повернення в роботу після<br>відключення      |                  | Напруга Cut-off @ Наван                     |                                                        | r.<20%>45 B                          | Нижня межа напруги Cut-off @<br>Навант.<20%+3В |
|                                                                     |                  | Напруга Cut-off @ Навант.<20%<45 В          |                                                        | т.<20%<45 В                          | 48 B                                           |
| Мінімальний SOC для попередження                                    |                  | 20% SOC (налаштовується)                    |                                                        |                                      |                                                |
| Мінімальний SOC при якому зникає попередження                       |                  | Мінімальний SOC для попередження +10%       |                                                        |                                      |                                                |
| Мінімальний SOC для відключення                                     |                  | 15% SOC (налаштовується)                    |                                                        |                                      |                                                |
| Мінімальний SOC при якому<br>інвертор повертається в роботу         |                  | Мінімальний SOC для відключення +10%        |                                                        |                                      |                                                |
| Максимальна напруга відключення                                     |                  | 58,4 B                                      |                                                        |                                      |                                                |
| Споживання без навантаження                                         |                  | <60 Вт                                      |                                                        |                                      |                                                |
| Таблиця 2 Режими заряду акумулятора                                 |                  |                                             |                                                        |                                      |                                                |
| Заряд від електромережі                                             |                  |                                             |                                                        |                                      |                                                |
| Алгоритм зарядки свинцево-кислотного акумулятора Трьох ступінчастий |                  |                                             |                                                        |                                      |                                                |

| Максимальний зарядний струм                                  |                   | 60 A (при 230 B)              |                                 |                  |  |
|--------------------------------------------------------------|-------------------|-------------------------------|---------------------------------|------------------|--|
| Напруга режиму накопичення                                   | Рідкий електроліт |                               | 58.4 B                          |                  |  |
|                                                              | AGM / GEL         |                               | 56.4 B                          |                  |  |
| Напруга підтримуючому заря                                   | іді               |                               | 54 B                            |                  |  |
|                                                              | Battery           | Voltage, per ce               | ell                             | Charging Current |  |
| 2.43Vdc(2.3                                                  | 5Vdc)             |                               |                                 | Voltage          |  |
| 2                                                            | .25Vdc            |                               |                                 | 100%             |  |
|                                                              |                   |                               |                                 | - 100%           |  |
| Крива заряджання АКБ                                         |                   |                               |                                 |                  |  |
|                                                              | ľ                 |                               |                                 | - 50%            |  |
|                                                              |                   | T0                            | T1                              |                  |  |
|                                                              |                   |                               |                                 | Current          |  |
|                                                              | (Const            | Bulk                          | Absorption                      | Maintenance Time |  |
|                                                              | (Collist          | ant current)                  | (constant voltage)              | (noating)        |  |
| Характристика МРРТ                                           |                   |                               |                                 |                  |  |
| Максимальна потужність PV                                    |                   |                               | 6400 Bt                         |                  |  |
| Напруга старту                                               |                   |                               | 100 B +-10 B                    |                  |  |
| Діапазон напруги                                             |                   |                               | 120 B ~ 385 B                   |                  |  |
| Макс. Напруга неробочого ходу                                |                   |                               | 480 B                           |                  |  |
| Макс. Струм заряду АКБ (від фотомодулів)                     |                   |                               | 110 A                           |                  |  |
| Макс. Струм заряду АКБ<br>(від фотомодулів та електромережі) |                   |                               | 110 A                           |                  |  |
| Таблиця 4 Загальні характеристики                            |                   |                               |                                 |                  |  |
| Модель інвертора                                             |                   |                               | SNA5000WPV/SNA4000WPV/SNA300WPV |                  |  |
| Сертифікат безпеки                                           |                   |                               | CE                              |                  |  |
| Діапазон робочої температури                                 |                   |                               | 0°C to 50°C                     |                  |  |
| Максимальний діапазон напруги                                |                   |                               | -15°C~ 60°C                     |                  |  |
| Вологість                                                    |                   | 5% до 95% відносної вологості |                                 |                  |  |
| Висота                                                       |                   |                               | <2000 м                         |                  |  |
| Габарити (ДхШхГ),мм                                          |                   |                               | 505х330х135 мм                  |                  |  |

14,5 кг

Маса, кг

# 7. Усунення несправностей та список помилок

Помилки вподіляються на 5 категорій, для кожної категорії рішення відрізняється:

| Код  | Опис                                                               | Вирішення проблеми                                                                                                            |
|------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| E000 | Втрата внутрішнього зв'язку, (1)                                   | Перезавантажте інвертор, якщо помилка залишиться,<br>зв'яжіться з нами (DSP&M3)                                               |
| E002 | Bat On Mos Fail                                                    | Перезавантажте інвертор, якщо помилка залишиться,<br>зв'яжіться з нами (DSP&M3)                                               |
| E003 | CT fail                                                            | Перезавантажте інвертор, якщо помилка залишиться,<br>зв'яжіться з нами (DSP&M3)                                               |
| E008 | Втрата комунікації через САN порт в<br>параллельному режимі роботи | Перевірте кабель CAN чи він ввімкнутий в правильний COM порт                                                                  |
| E009 | Немає головного інвертора в<br>паралельному режимі                 | Перевірте налаштування для головного інвертората<br>інших інверторів, повинен бути лише один головний<br>інвертор             |
| E010 | Декілька головних інверторів в<br>паралельній системі              | Перевірте налаштування для головного інвертората<br>інших інверторів, повинен бути лише один головний<br>інвертор             |
| E011 | Неузгодженість по змінному<br>струму в паралельній системі         | Перевірте підключення кабелів змінного струму для<br>всіх інверторів в систем.                                                |
| E012 | Коротке замикання в режимі<br>Off grid                             | Перевірте чи нема короткого замикання на навантаженні,<br>спробуйте вимкнути навантаження та перезавантажити<br>інвертор      |
| E013 | Виникла проблепа при АВР                                           | Перезавантажте інвертор, якщо помилка залишиться, зверніться до нас                                                           |
| E015 | Помилка по фазі в трифазній<br>паралельній системі                 | Перевірте підключення по змінному струму для трифазної<br>системи, на одній фазі має бути підключено хоча б один<br>інвертор  |
| E016 | Несправність реле                                                  | Перезавантажте інвертор, якщо помилка залишиться,<br>зв'яжіться з нами                                                        |
| E017 | Втрата внутрішнього зв'язку, (2)                                   | Перезавантажте інвертор, якщо помилка залишиться,<br>зв'яжіться з нами (DSP&M3)                                               |
| E018 | Втрата внутрішнього зв'язку, (3)                                   | Перезавантажте інвертор, якщо помилка залишиться,<br>зв'яжіться з нами (DSP&M3)                                               |
| E019 | Висока напруга на шині                                             | Перевірте чи вхідна напруга PV не вища за 480 В                                                                               |
| E020 | Помилка на виході EPS                                              | Перевірте підключення EPS та вхід електромережі                                                                               |
| E021 | Висока напруга на РV                                               | Перевірте підключення фотомодулів та перевірте чи<br>вхідна напруга PV не вища за 480 В                                       |
| E024 | Коротке замкнення по PV                                            | Перевірте підключення фотомодулів                                                                                             |
| E025 | Висока температура                                                 | Висока температура інвертора, вимкніть інвертор на 10 хвилин<br>та перезавантажте, якщо помилка залишиться, зверніться до нас |
| E026 | Втрата внутрішнього зв'язку                                        | Перезавантажте інвертор, якщо помилка залишиться, зверніться до нас (наприклад шина)                                          |
| E031 | Втрата внутрішнього зв'язку, (4)                                   | Перезавантажте інвертор, якщо помилка залишиться,<br>зв'яжіться з нами (DSP&M3)                                               |

| Код  | Опис                                                        | Вирішення проблеми                                                                                                                                                   |
|------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W000 | Втрата зв'язку з<br>акумулятором                            | Перевірте чи обраний вірний виробник та<br>інформаційні кабелі підібрані вірно, якщо помилка<br>залишиться, зверніться до нас                                        |
| W001 | Висока температура на<br>акумуляторі                        | Перевірте чи правильно під'єднаний температурний<br>сенсор та чи температура АКБ не перевищує норму                                                                  |
| W002 | Низька температура на<br>акумуляторі                        | Перевірте чи правильно під'єднаний температурний<br>сенсор та чи температура АКБ не нижче норми                                                                      |
| W004 | Несправність акумулятора                                    | Інвертор отримав інформацію про несправність від BMS<br>акумулятора, перезавантажте АКБ, якщо помилка залишиться,<br>зверніться до нас або до виробника акумуляторів |
| W008 | Невідповідність ПО                                          | Будь ласка, зверніться до LuxPower для оновлення прошивки                                                                                                            |
| W009 | Несправність вентилятору                                    | Перевірте чи все добре з вентиляторами                                                                                                                               |
| W012 | Bat On Mos                                                  | Перезавантажте інвертор, якщо помилка залишиться, зверніться<br>до нас                                                                                               |
| W013 | Перегрів                                                    | Внутрішня температура трохи більша за рекомендовану                                                                                                                  |
| W018 | Частота змінного струму вийшла<br>за встановленні рамки     | Перевірте чи частота змінного струму входить у<br>встановленні рамки                                                                                                 |
| W025 | Висока напруга акумулятора                                  | Перевірте чи напруга АКБ в допустимих межах                                                                                                                          |
| W026 | Низька напруга акумулятора                                  | Перевірте чи напруга АКБ в допустимих межах,<br>якщо напруга низька вам потрібно зарядити<br>акумулятор                                                              |
| W027 | Розірване електричне коло між<br>акумулятором та інвертором | Перевірте чи вихід акумулятора та підключення<br>акумуляторів до інвертора в нормі                                                                                   |
| W028 | Перевантаження EPS                                          | Перевірте чи є перевантаження                                                                                                                                        |
| W029 | Висока напруга EPS                                          | Перезавантажте інвертор, якщо помилка залишиться,<br>зверніться до нас                                                                                               |
| W031 | Високе значення DCV EPS                                     | Перезавантажте інвертор, якщо помилка залишиться,<br>зверніться до нас                                                                                               |