Products Solutions Services

Technical Information Rxn-40 Raman spectroscopic probe

Table of Contents

Function and system design	3
Fields of application	3
Laser safety interlock	3
LED laser indicator	3
Rxn-40 probe, non-flanged configuration	4
Rxn-40 probe, flanged configuration	4
Rxn-40 probe, mini configuration	5
Process and probe compatibility	5
Installation	6
Data collection zone: short vs. long	6
Focal plane	7

Specifications	88
Temperature and pressure	8
General specifications	9
MPE: ocular exposure	10
MPE: skin exposure	10
Nominal hazard zone	11
Materials of construction	11
Certificates and approvals	12
Hazardous area approvals	12
Certifications and markings	13
Hazardous area drawing	14

Function and system design

Fields of application

The Rxn-40 Raman spectroscopic probe is intended for liquid immersion sample analysis in a laboratory or process plant setting.

Recommended applications include:

- Chemical: reaction monitoring, blending, catalyst monitoring, feed and final product monitoring
- Polymer: polymerization reaction monitoring, extrusion monitoring, polymer blending
- Pharmaceutical: active pharmaceutical ingredient (API) reaction monitoring, crystallization, polymorph, blending
- Oil and gas: any hydrocarbon analysis

Use of the device for any purpose other than that described, poses a threat to the safety of people and of the entire measuring system and is not permitted and invalidates any warranty.

Laser safety interlock

The Rxn-40 probe, as installed, forms part of the interlock circuit. If the fiber cable is severed, the laser will turn off within milliseconds of the breakage.

NOTICE

Handle probes and cables with care.

Fiber cables should NOT be kinked and should be routed to maintain the minimum bend radius of 152.4 mm (6 in.).

▶ Permanent damage may result if cables are not routed appropriately.

The interlock circuit is a low-current electrical loop. If the Rxn-40 probe is used in a classified area, the interlock circuit must be run through an intrinsically safe (IS) barrier.

LED laser indicator

The location of the LED laser indicator depends on the assembly type.

- Non-removable right-angle EO fiber connector (Figure 1): The indicator is located on the assembly. When there is potential for the laser to be energized, the indicator light is illuminated.
- Integrated stainless steel fiber connection shell option (Figures 2, 3 and 4 below): The indicator is located on the fiber connection shell. When there is potential for the laser to be energized, the indicator light is illuminated.

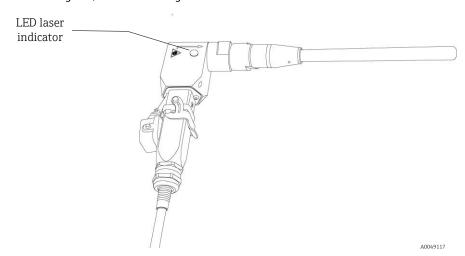


Figure 1. LED laser indicator on right-angle EO fiber connector

Rxn-40 probe, non-flanged configuration

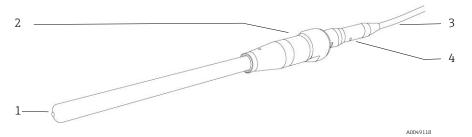


Figure 2. Non-flanged configuration of the Rxn-40 probe

#	Name	Description	
1	Tip	316L stainless steel, C276 alloy or Grade 2 titanium Immersible length of 152, 305, or 457 mm (6, 12, or 18 in.)	
2	Optic body	Materials matched to probe tip, but not wetted by process fluids	
3	Fiber cable	Cable: PVC jacketed, proprietary construction Connections: proprietary electro-optic Connector body: 300-series stainless steel	
4	LED laser indicator	Illuminated when the laser is energized	

Table 1. Rxn-40 probe parts, non-flanged configuration

Rxn-40 probe, flanged configuration

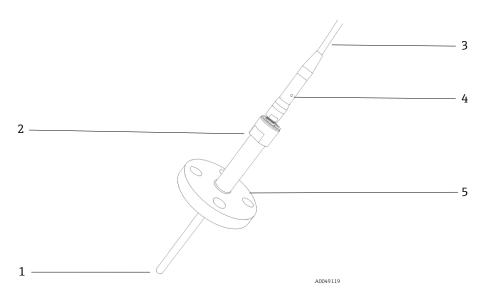


Figure 3. Flanged configuration of the Rxn-40 probe

#	Name	Description	
1	Tip	316L stainless steel, C276 alloy or Grade 2 titanium	
2	Optic body	Materials matched to probe tip, but not wetted by process fluids	
3	Fiber cable	Cable: PVC jacketed, proprietary construction Connections: proprietary electro-optic Connector body: 300-series stainless steel	
4	LED laser indicator	Illuminated when the laser is energized	
5	Flange	ASME B16.5 and DIN EN1092 Type B flanges available	

 $Table\ 2.\ Rxn-40\ probe\ parts, flanged\ configuration$

Rxn-40 probe, mini configuration

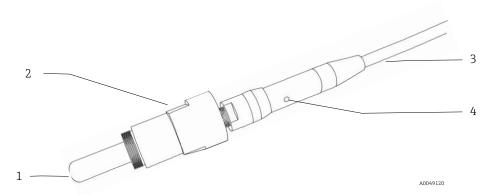


Figure 4. Mini configuration of the Rxn-40 probe

#	Name	Description
1	Tip	316L stainless steel, C276 alloy or Grade 2 titanium Immersible length of 36 mm (1.42 in.)
2	Optic body	Materials matched to probe tip, but not wetted by process fluids
3	Fiber cable	Cable: PVC jacketed, proprietary construction Connections: proprietary electro-optic Connector body: 300-series stainless steel
4	LED laser indicator	Illuminated when the laser is energized

Table 3. Rxn-40 probe parts, mini configuration

Process and probe compatibility

Prior to installation, the user must check that the probe pressure and temperature ratings, as well as the materials from which the probe is made, are compatible with the process into which it is being inserted.

The probes should be installed using sealing techniques (e.g., flanges, compression fittings) appropriate and typical for the vessel or piping.

WARNING

If the probe will be installed in a high temperature or pressure process, additional safety precautions must be taken to avoid equipment damage or safety hazards.

A blow-out protection device is highly recommended in accordance with local safety standards.

▶ It is the responsibility of the user to determine if any blow-out protection devices are required and ensure they are attached to the probes during installation.

WARNING

If the probe being installed is constructed of titanium, the user should be aware that impacts or excessive process friction could cause a spark or otherwise cause ignition.

► The user must ensure that precautions are taken when installing and using a titanium probe to avoid such an occurrence.

Installation

Prior to installation in the process, the maximum amount of laser power output should be verified to ensure it is no more than the amount specified in the Hazardous Area Equipment Assessment (4002266) or equivalent.

Standard eye and skin safety precautions for Class 3B laser products (as per EN 60825/IEC 60825-14) should be observed during installation. Additionally, observe the following:

▲ WARNING	Probes are designed with specific sealing boundaries. ➤ The probe pressure specifications are only valid if sealing is accomplished on the intended sealing feature (shaft, flange, etc.).				
	Standard precautions for laser products should be observed.				
	 Probes should always be capped or pointed away from people toward a diffuse target if not installed in a sample chamber. 				
A CAUTION	If stray light is allowed to enter an unused probe, it will interfere with data collected from a used probe and may cause calibration failure or measurement errors.				
	Unused probes should ALWAYS be capped to prevent stray light from entering the probe.				
NOTICE	Take care to install the probe such that it measures the flowing sample or sample region of interest.				
	Excessive twisting of the cable within the connector may break a fiber connection, rendering the Rxn-40 probe inoperable.				

Data collection zone: short vs. long

The Rxn-40 probe comes with either a short (S) or a long (L) data collection zone depending on the version selected.

A short data collection zone is generally used for opaque samples such as powders, gels, slurries, and paint.

A long data collection zone is better for transparent samples, such as hydrocarbons and solvents, because it maximizes the signal intensity by using the entire effective focal cylinder.

The effective focal cylinder is the volume of sample from which the majority of the Raman signal is collected, as shown in Figure 6.

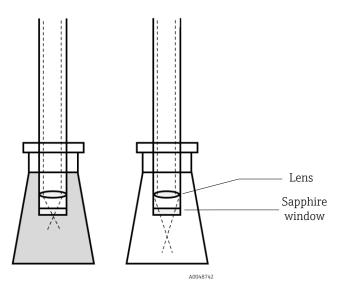


Figure 5. Short (left) vs. long (right) data collection zone

6

Focal plane

Spectral data is collected most efficiently at the focal plane.

NOTICE

The focus is set at the factory and cannot be adjusted by the user.

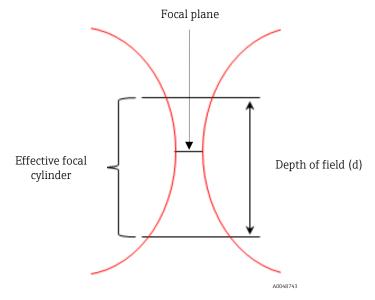


Figure 6. Effective focal cylinder

Specifications

Temperature and pressure

The temperature and pressure specifications for the Rxn-40 probe vary depending on the materials of construction. Additionally:

- Max Pressure is calculated per ASME BPVC VIII.1 UG-28(c) for material and probe geometry at the maximum rated temperature.
- Max service pressure ratings do not include the ratings of any fittings or flanges used to
 mount the probe into the process system. These items need to be independently
 evaluated and may lower the maximum service pressure of the probe.
- Minimum pressure rating: All probes have a minimum pressure rating of 0 bara (full vacuum). However, unless specified, they are not rated for low outgassing at high vacuum service.
- The temperature ramp is ≤ 30 °C/min (≤ 54 °F/min).

Component	Materials of construction	Min temp	Max temp	Max service pressure
Rxn-40 probe	316L stainless steel 316L	−30 °C (−22 °F)	120 °C (248 °F)	68.5 barg (990 psig)
	Alloy C276 alloy	−30 °C (−22 °F)	280 ℃ (536 ℉)	74.0 barg (1070 psig)
	Grade 2 titanium	−30 °C (−22 °F)	300 ℃ (572 ℉)	29.0 barg (420 psig)
Rxn-40 probe, mini configuration	316L stainless steel	−30 °C (−22 °F)	120 °C (248 °F)	68.5 barg (990 psig)
	C276 alloy	−30 °C (−22 °F)	150 ℃ (302 ℉)	74.0 barg (1070 psig)
	Grade 2 titanium	−30 °C (−22 °F)	150 °C (302 °F)	29.0 barg (420 psig)
Cable and connector	Cable: PVC jacketed, proprietary construction Connections: proprietary electro-optic	−40 °C (−40 °F)	70 ℃ (158 ℉)	Not applicable

Table 4. Temperature and pressure specifications

General specifications

General specifications for the Rxn-40 probe are listed below.

Item		Description		
		-		
Laser wavelength		532 nm, 785 nm, or 993 nm		
Spectral coverage		probe spectral coverage is limited by the coverage of the analyzer being used		
Maximum laser po	wer into probe	< 499 mW		
Operating humidit	у	up to 95% relative humidity, non-condensing		
Probe body purge		helium		
Probe body herme	ticity	purge helium leak rate $< 1 \times 10^{-7}$ mbar·L/s		
Chemical resistance	ce	limited by materials of construction		
Window material		high-purity sapphire		
Working distance	from probe exit	short: 0 mm (0 in.) long: 3 mm (0.12 in.)		
Focal length(f_0)		9 mm (0.35 in.)		
Beam diameter (ba	p)	5 mm (0.20 in.)		
Probe immersible Rxn-40 non-flanged configuration		standard lengths are 152, 305, or 457 mm (6, 12, or 18 in.) Grade 2 titanium: 150 to 350 mm (5.9 to 13.8 in.)		
	Rxn-40 flanged configuration	150 to 380 mm (5.9 to 15.0 in.)		
Rxn-40 mini configuration		36 mm (1.42 in.)		
		12.7 mm (0.5 in.) standard; custom diameters may be available		
	Rxn-40 flanged configuration	$12.7,19.05,\mathrm{or}25.4\mathrm{mm}$ (0.5, 0.75, or 1 in.) standard; custom diameters may be available		
Rxn-40 mini configuration		12.7 mm (0.5 in.) standard; custom diameters may be available		
Fiber optic cable length (cable sold separately; lengths limited by application)		FC cable available from 5 m to 50 m in 5 m increments (16.4 ft. to 164.0 ft. in 16.4 ft. increments) EO cable available from 5 m to 200 m in 5 m increments (16.4 ft. to 656.2 ft. in 16.4 ft. increments) EO male to EO female extensions available from 5 m to 200 m in 5 m increments (16.4 ft. to 656.2 ft. in 16.4 ft. increments)		
Fiber optic cable flame resistance		certified: CSA-C/US AWM I/II, A/B, 80C, 30V, FT1, FT2, VW-1, FT4 rated: AWM I/II A/B 80C 30V FT4		

Table 5. General specifications

MPE: ocular exposure

Refer to the tables below from the ANSI Z136.1 standard to calculate the maximum permissible exposure (MPE) for point source ocular exposure to a laser beam.

A correction factor (C_A) may also be required and can be determined below or by referring to the current version of the ANSI Z136.1 standard.

Wavelength λ (nm)	Correction factor $C_{ m A}$
400 to 700	1
700 to 1050	10 ^{0.002} (\(\lambda\)-700\)
1050 to 1400	5

Table 6. Wavelength dependent correction factor C_A

MPE for point source ocular exposure to a laser beam				
Wavelength	Exposure duration	MPE calculation		
λ (nm)	t (s)	t (s) (J·cm ⁻²)		
532	10 ⁻¹³ to 10 ⁻¹¹	1.0 × 10 ⁻⁷	-	
	10 ⁻¹¹ to 5 × 10 ⁻⁶	2.0 × 10 ⁻⁷	-	
	5 × 10 ⁻⁶ to 10	$1.8 \ t^{0.75} \times 10^{-3}$	-	
	10 to 30,000	-	1 × 10 ⁻³	

Table 7. MPE for ocular exposure with 532 nm laser emission

MPE for point source ocular exposure to a laser beam				
Wavelength	Exposure duration t (s)	MPE calculation		MPE where
λ (nm)		(J·cm⁻²)	(W·cm⁻²)	$C_{\rm A}$ = 1.4791
785 and 993	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_{\rm A} \times 10^{-8}$	-	2.2 × 10 ⁻⁸ (J·cm ⁻²)
	10 ⁻¹¹ to 10 ⁻⁹	2.7 C _A t ^{0.75}	-	Insert time (t) and calculate
	10 ⁻⁹ to 18 x 10 ⁻⁶	5.0 C _A × 10 ⁻⁷	-	7.40 × 10 ⁻⁷ (J·cm ⁻²)
	18 x 10 ⁻⁶ to 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	Insert time (t) and calculate
	10 to 3 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$	1.4971 × 10 ⁻³ (W⋅cm ⁻²)

Table 8. MPE for ocular exposure with 785 nm or 993 nm laser emission

MPE: skin exposure

Refer to the table below from the ANSI Z136.1 standard to calculate the MPE for skin exposure to a laser beam.

MPE for skin exposure to a laser beam					
Wavelength	Wavelength λ (nm) Exposure duration t (s)	MPE calculation		MPE where	
λ (nm)		(J·cm⁻²)	(W·cm⁻²)	C _A = 1.4791	
	10 ⁻⁹ to 10 ⁻⁷	2 C _A × 10 ⁻²	-	2.9582 × 10 ⁻² (J·cm ⁻²)	
532, 785 and 993	10 ⁻⁷ to 10	$1.1 C_{\rm A} t^{0.25}$	-	Insert time (<i>t</i>) and calculate	
	10 to 3 × 10 ⁴	-	0.2 C _A	2.9582 × 10 ⁻¹ (W·cm ⁻²)	

Table 9. MPE for skin exposure with 532 nm, 785 nm or 993 nm laser emission

10

Nominal hazard zone

Use the information below to calculate the nominal hazard zone at the tip of the probe. Refer to the applicable Raman Rxn2 or Raman Rxn4 analyzer operating instructions for analyzer-specific information regarding nominal hazard zone calculations.

Beam diameter (b_0)	Focal length (f_0)	Nominal ocular hazard distance (NOHD) equation
5 mm (0.20 in.)	9 mm (0.35 in.)	$r_{\text{NOHD}} = (f_0/b_0)(4\Phi/\pi\text{MPE})^{1/2}$
		Φ = Laser power output in Watts

Table 10. Nominal hazard zone calculation

Materials of construction

Materials of construction for the Rxn-40 probe are listed below.

Probe Type	Version			
	C276 alloy [UNS N10276; Hastelloy C276]	316L [UNS S31603]	Titanium [UNS R50400]	
Rxn-40 flanged or non-flanged,	C276 alloy	316L stainless steel	Grade 2 titanium	
non-wetted	303 stainless steel	303 stainless steel	303 stainless steel	
	oxygen-free copper	oxygen-free copper	oxygen-free copper	
	high temperature epoxy	high temperature epoxy	high temperature epoxy	
Rxn-40 mini configuration, non-wetted	303 stainless steel	303 stainless steel	303 stainless steel	
	oxygen-free copper	oxygen-free copper	oxygen-free copper	
Rxn-40 flanged or non-flanged, wetted, in contact with sample	C276 alloy	316L stainless steel	Grade 2 titanium	
	high-purity sapphire	high-purity sapphire	high-purity sapphire	
Rxn-40 mini configuration, wetted, in contact with sample	C276 alloy	316L stainless steel	Grade 2 titanium	
	high-purity sapphire	high-purity sapphire	high-purity sapphire	

Table 11. Materials of construction

Certificates and approvals

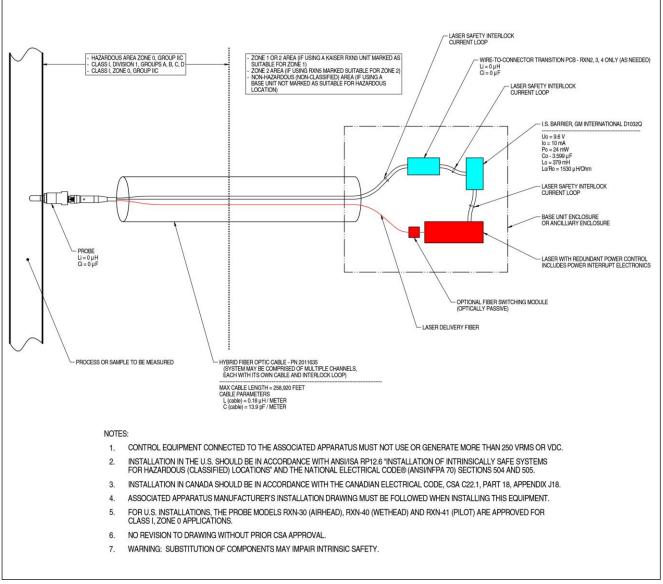
Hazardous area approvals

The hazardous area approvals are listed below.

Туре	Description
Hazardous area approvals	ATEX The Rxn-40 probe has been third-party approved for use in hazardous areas in accordance with Article 17 of Directive 2014/34/EU of the European Parliament and of the Council dated 26 February 2014. The Rxn-40 probe has been certified to the ATEX Directive for use in Europe, as well as in other countries accepting ATEX-certified equipment.
	IECEx The Rxn-40 probe can also be marked for International Electrotechnical Commission (IEC) Certification Systems for Explosive Atmospheres when installed in accordance with the Hazardous Area Installation Drawing. North American
	The Rxn-40 probe has also been approved for use in hazardous areas in the United States (US) and Canada by the <u>Canadian Standards Association</u> when installed in accordance with the Hazardous Area Installation Drawing. The products are eligible to bear the CSA Mark with adjacent indicators 'C' and 'US' for Canada and US or with adjacent indicator 'US' for US only or without either indicator for Canada only.

Table 12. Hazardous area approvals

Certifications and markings


 $Endress + Hauser\ offers\ certifications\ for\ the\ Rxn-40\ probe\ to\ the\ standards\ below.\ Select\ the\ desired\ certification(s)\ and\ the\ probe\ or\ probe\ tag\ is\ marked\ accordingly.$

desired certification(s) and the probe or probe tag is marked accordingly.			
Туре	Description		
ATEX marking and installations	ATEX marking is available as an option during the quoting process. Available markings: II 2/1 G Ex ia op is IIA or IIB or IIB+H2 or IIC T3 or T4 or T6 Ga		
	Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following: Work with purchasing to identify the required marking OR Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266).		
	Endress+Hauser will mark the Rxn-40 probes according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.		
	▲ WARNING		
	In an ATEX-governed environment, only ATEX-marked probes may be used.		
North American hazardous area	CSA marking is available as an option during the quoting process. Available markings:		
marking and installations	Ex ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga		
	Class I, Zone O AEx ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga Class I, Division 1, Groups A, B, C, D T3/T4/T6		
	Class I, Division I, Groups A, D, C, D 157 147 10		
	Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following:		
	Work with purchasing to identify the required marking OR		
	 Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266). 		
	Endress+Hauser will mark the Rxn-40 probes according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.		
	For North American applications into classified environments, the probe set will have the CSA mark and can be considered intrinsically safe when installed according to the Hazardous Area Installation Drawing (4002396).		
	▲ WARNING		
	In a CSA-governed environment, only CSA-marked probes may be used.		
IECEx hazardous area marking and installations	IECEx marking is available as an option during the quoting process. Available markings:		
	Ex ia op is IIA or IIB or IIB + H2 or IIC T3 or T4 or T6 Ga IECEx ITS 14.0015X		
	Prior to the order, the marking for the particular probe/application must be determined. The customer must do one of the following:		
	 Work with purchasing to identify the required marking OR Provide Endress+Hauser with a completed copy of the Hazardous Area Equipment Assessment (4002266). 		
	Endress+Hauser will mark the Rxn-40 probes according to the customer's provided information. Endress+Hauser is not responsible for the customer's inaccuracies.		
	For IECEx applications into classified environments, the probe set will have the IECEx mark and can be considered intrinsically safe when installed according to the Hazardous Area Installation Drawing (4002396).		
	▲ WARNING		
	In an IECEx-governed environment, only IECEx-marked probes may be used.		

Table 13. Certifications and markings

Hazardous area drawing

The Hazardous Area Installation Drawing (4002396) is shown below.

A0049010

Figure 7. Hazardous Area Installation Drawing (4002396 version X5)

www.addresses.endress.com

People for Process Automation