
User's Manual for DL57D

Catalog

- I. Introduction
- II , Mechanical installation size
- III, Terminal function
- IV. Parameter setting
- V 、Alarm code

I. Introduction

DL57D is a new digital step-servo driver, using a vector controlling technology. It can drive 42 series and 57 series step-motors.

DL57D can fit various automation equipment and instruments with below technical features:

- ◆ Use of 32 bit motor control MCU;
- ◆ Use of vector servo control technology;
- ◆ Easy Operation with four LED Segment Displays and keyX4;
- ◆ Wide range of drive current drive current from 0.4 to 4.0A/phase;
- ◆ Can drive 42 series and 57 series hybrid step-motors;
- Opto-isolated signal input/output;
- Highest response frequency: 200Kpps;
- ◆ Provide 15 channels micro steps ,highest micro step: 51200 ppr
- ◆ Provide Electronic Gear Ratio;
- ◆ Protection circuit: Over heat; Over current; Over voltage; Over-speed and position deviation;
- ◆ Two control method:Position,Speed;
- ♦ Net Weight:300g

II . Mechanical installation size(unit:mm)

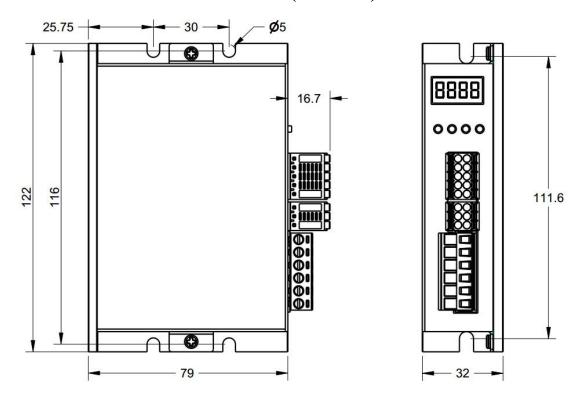


Figure 1:Mechanical specifications

Attention: When the Driver temperature exceeds 40°C, the fan will start to work. When the Driver temperature exceeds 70°C, the current will be cut off automatically and the Driver will not work till the temperature drops to 40°C. In case this happens, please install ventilation equipment.

III, Terminal function and Drive connection

3.1 Terminal Function

A. Step-motor and Power Definition

Terminal Number	Mark	Function	Motor Wire Colour
1	A+	A phase+	White
2	A-	A phase—	Green
3	B+	B phase+	Blue
4	В-	B phase— Black	
5	V-	Power input	
6	V+	Power input DC24~ 80V	

B, Encoder Definition

Terminal Assignment	Mark	Function	Wire Colour
1	EB+	Encoder B phase +	Yellow
2	EB-	Encoder B phase -	Green
3	EA+	Encoder A phase +	Black
4	EA-	Encoder A phase -	Blue
5	VCC	Encoder power +5V	Red
6	EGND	Encoder power GND	White

C. Control Signal

Terminal	Mark	Function	Instruction
1	PUL+	Pulse signal positive side	Pulse signal: In single pulse (pulse/direction) mode, this input represents pulse signal, each rising or falling edge active (software configurable); 5-24V when PUL-HIGH, 0-0.5V when PUL-LOW. In double pulse
2	PUL-	Pulse signal negative side	mode (pulse/pulse) ,this input represents clockwise (CW) pulse. For reliable response, pulse width should be longer than 2.5μ s.
3	DIR+	Direction signal positive side	DIR signal: In single-pulse mode, this signal has low/high voltage levels,representing two directions of motor rotation; in double-pulse mode, this signal is counter-clock (CCW) pulse. For reliable motion response, DIR signal should be ahead of PUL signal by
4	DIR —	Direction signal negative side	5 μ s at least. 5-24V when DIR-HIGH,0-0.5V when DIR-LOW. Please note that rotation direction is also related to motor-Drive wiring match. Exchanging the connection of two wires for a coil to the Drive will reverse motion direction.
5	ENA+	Motor free signal positive side	This signal is used for enabling/disabling the
6	ENA-	Motor free signal negative side	Driver.Usually left UNCONNECTED (ENABLED)
7	Pend+	In-position signal positive side	When step-motor is in-position, the drive will give a
8	Pend—	In-position signal negative side	signal to the PC
9	ALM+	Warning signal positive output	When drive break down ,it will output ALM signal to
10	ALM-	Warning signal negative output	the PC

3.2 Control Signal Circuit

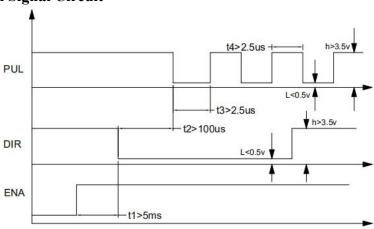


Figure 2: Sequence chart of control signals

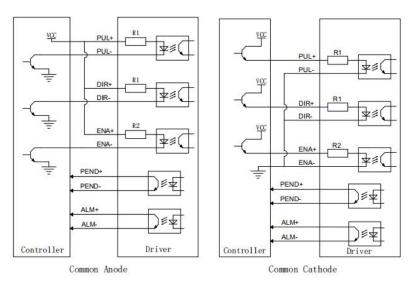


Figure 3:Control signal Interface Connection Diagram

Attention:

- t1: ENA must be ahead of DIR by at least 5ms. Usually, ENA+ and ENA- are NC (not connected).
- b) t2: DIR must be ahead of PUL active edge by 100 µs to ensure correct direction;
- c) t3: Pulse width not less than 2.5 µs;
- d) t4: Low level width not less than $2.5 \mu s$.

IV. Parameter Setting

DL57D have four LED Segment Displays and four keys: ♠, ↑ and ⊷.

Key	Instruction
1	back, cancel; return to the previous menu, cancel the operation
+	PgDn adjust data when value is modified
↑	PgUp, shift data when value is modified
1	Enter the parameter setting model(press the key for 3 seconds)

When the drive start to work, it displays the driver version first, then it displays the state of driver after 3 seconds. when the step-motor start to work, it displays the speed of step-motor(r/min). Once the step-motor reverses, the top byte of speed value flashes.

4.1 Parameter Function Instruction

4.1.1 Parameter Function Table

Parameter	Function	Value	Factory Setting	Instruction
P000	Control parameter	~	0000	Read 4.1.2 Function of P000
P001	Miono aton auttino	CE+ 2~ 256	10	17 channels
PUUI	Micro step setting	SEt, 2~256		Caution:Restart the Driver
P002	Set direction of	0、1	0	Set the motor rotate direction
F 002	step-motor rotation	0、1	U	Caution:Restart the Driver
P003	Salaat the motor time	42 57	57	42or57 motor type
P003	Select the motor type	42\ 37	37	Caution:Restart the Driver
P004	Setting Position	1~9999	4000	
F004	Deviation	1,~9999	4000	

P005	Standby Current Ratio	0~100%	50	
D006	Electronic Gear		1	
P006	Ratio(Numerator)		1	
P007	Electronic Gear Ratio		1	
P007	(Denominator)		1	
P020	Low-4-bit of Input	~		
	pulse			Display the value of input pulse
P021	High-4-bit of Input	\sim		Display the value of input pulse
	pulse			
P100	Running Current Ratio	10~120%	100	*
P101	Current Loop Gain	1~1000	115	Modify is forbidden
P102	Current Loop Integral	1~1000	45	Modify is
1102	Time Constant	1 1000	73	forbidden
P103	Current Loop	1~1000	830	Modify is forbidden
1 103	Damping Factor	1 1000	650	Widdity is followden
P104	Speed Loop Gain	1~1000	65	*
P105	Speed Loop Integral	1~1000	85	*
1103	Time Constant	1 1000	03	
P106	Position Loop Gain	1~1000	50	*
P107	Speed Loop	1~100	95	*
D100	Feed-forward	0 1	1	*
P108	Enable	0, 1	1	,
P109	Speed Loop Damping Factor	1~100	15	*
	1 actor			Setting level signal of ENA,
P110	Setting I/O Level	0000~1111	0000	Pend and ALM.0 or 1 is valid
1110	signal		0000	Caution: Restart the Driver
				± 1 pulse. The bigger the value,
				the bigger the positioning
				error; When the load is too
P111	positioning accuracy	1-50	1	heavy, the resonance can be
				suppressed.
				Caution:Restart the Driver
				Under the same inflexibility, the
				smaller the value, the shorter
P112	resonance coefficient	1-12	6	the positioning time, the more
-				easily resonance occurs
				Caution: Restart the Driver
				0: Position control mode (Mode
				A);
				1: Speed control mode
P200	Control Mode	0, 1, 2	0	2: Position control mode (Mode
				B)
				Caution:Restart the Driver
				Castlon.Restart the Dirver

Speed setting in speed		1~3000	(0	Self-inspection pulse
P201	mode	1,~3000	60	(unit: rev/min)
P202	acceleration time in speed mode		100	unit: ms
P203	The delay time of brake on(_ms)		0	Read 4.1.3 Function of P000
P204	Control mode after Alarm	0, 1, 2	0	Read 4.1.4 Function of P000

NOTE:

◆ Default value of **P110** is 0000,

$$\mathbf{P110} = \frac{0}{A} \frac{0}{B} \frac{0}{C} \frac{0}{D}$$

D=0, When malfunction occurs, **ALM** output is low impedance;

D=1, When malfunction occurs, ALM output is high impedance;

C=0, When step-motor is in-position, **Pend** output is low impedance;

C=1, When step-motor is in-position, **Pend** output is high impedance;

B=0 ,Pulse+Direction,the falling edge is effective;

B=1 ,Pulse+Direction,the rising edge is effective;

B=2,CCW pulse/CW pulse,the falling edge is effective;

B=3,CCW pulse/CW pulse,the rising edge is effective;

A=0, when ENA input signal is low – level, the drive cut off motor current and set the motor free.

A=1, when ENA input signal is high – level, the drive cut off motor current and set the motor free.

◆ P200: Position Control Mode Instruction

P200	Function
0	Mode A:Closed-loop(include position-loop,current-loop and speed-loop)
2	Mode B:Phasor control(include position-loop and current-loop)

P200=2 (Mode B)

Parameter	Function	Factory Setting	Instruction
P104	Speed Loop	15	The value is smaller, the gain is higher
D106	D ''. I	15	and its rigidity is stronger The value is smaller, the gain is higher
P106	Position Loop	15	and its rigidity is stronger

◆ P200: Speed Mode Setting(Self-inspection pulse)

PUL- point signal input level	DIR- point signal input level	Function
0	0	Motor stopped
0	1	Clockwise(Self-inspection pulse)
1	0	Counter clockwise(Self-inspection pulse)
1	1	Motor stopped

NOTE:

When P000 is "0200", the internal drive will run at 60 rev / min. In this mode, pressing \downarrow down the speed of motor, pressing \uparrow raise the speed of motor, speed ranging from -300 to +300, pressing \rightleftharpoons cancel this mode.

4.1.2 Function of P000

P000	Function
1111	Reset to Factory Defaults
0100	soft-start up the fan
0101	Display the speed of motor
0102	Display the value of DC bus voltage
0103	Display the temperature value of Drive
0104	Display position error
0105	Display ex-factory date
0106	History fault
0200	Self-inspection pulse

4.1.3 Function of P203

P203	Function
0	Define alarm signal output
200ms	This parameter defines the delay time from the motor energized until the
ZOOMS	action(alarm output) BRK is ON (for example 200ms)

• When ALM terminal is using for BRK, the lowest digit of P110 must set up 1.

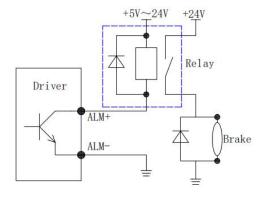


Figure 4: BRK circuit

4.1.4 Function of P204

P204	Alarm signal is on
0	PWM is closed immediately
1	PWM is closed slowly after 3 second
2	PWM keeping on 3 second, then Driver clear alarm signal, and restart. When clearing
	alarm signal twice,the alarm signal is keeping-on still,the Driver doesn't restart again.

4.1.5 subdivision table (P001)

Micro step	SEt	2	4	5	8	10	16	20	25
Micro step	32	40	50	64	100	128	200	256	Null

Servo Response:

- 1. Higher the speed loop gain(P104) or smaller the speed loop integral time constant(P105), faster the speed control response will be. But due to machine feature, machine vibration may result due to excessive speed loop gain.
- 2. Higher the position loop gain(P106), faster the position control response will be with fewer errors. But due to machine feature, machine vibration may result due to excessive position loop

gain. The position loop gain is enabled in the zero-position fixed mode.

3.Speed feed-forward(**P107**) reference is the function that reduces the positioning time by feed-forward compensation in position control. The max value is 100.

Terminology Feed-forward Control: It indicates the necessary corrective action that is performed prior to external interference in the control system. Once it is activated, servo gain will rise and the response performance will be improved.

NOTE:

- 1. Provides 16 kinds of micro step selection, upmost micro step can be set to 200x.
- 2. When the step-motor rotation direction and the system direction given by the controller are opposite, please change the value of parameter **P002**.
- 3. When you select SEt (the value of P001), the micro step of Servo Drive is Electronic Gear Ratio.

If the deceleration ratio of the servomotor and the load shaft is given as n/m where m is the rotation of the servomotor and n is the rotation of the load shaft, the electronic gear ratio is calculated as below:

Electronic gear ratio =
$$\frac{P006}{P007}$$

$$= \frac{Encoder.resolution.ratio}{Displacement.per.load.shaft.revolution(reference.units)} \times \frac{m}{n}$$

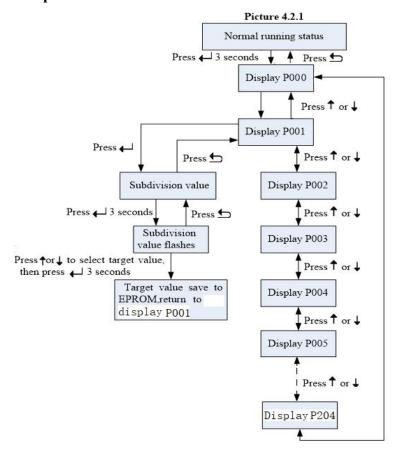
Note that:
$$\frac{1}{20} \le \text{Gear Ratio} \le 20$$

Encoder resolution ratio indicates the count of pulses output by the encoder during one motor rotation.

Orthogonal incremental encoder resolution ratio = Number of wires * 4

For example:

Displacement per load shaft revolution =6000(pulse)


Number of wires=1000

$$m=1, n=1$$

Gear Ratio =
$$\frac{P006}{P007} = \frac{1000*4}{6000} \times \frac{1}{1} = \frac{2}{3}$$

Calculation as below: P006=2, P007=3

4. 2 How to set parameter

Note:

1.P000 will return to factory setting when the Drive restart

2. When P000 is "1111", all parameters will reset to Factory defaults

V \ Alarm code

When malfunction occurs, the driver will display corresponding alarm code, and more will be shown in turn if more alarm signals \circ

5.1 Alarm Code

ALM code	Function	Instruction	
Er 01	Over current	When current exceeds rated value, the drive will stop running	
Er 02	Over-speed	The max speed is 3000r/min	
Er 03	Position	When position deviation value exceeds rated value, the driver	
	deviation	will stop running	
Er 04	Over heat	The max value is over 80℃	
Er 05	Over voltage	When input voltage exceeds rated value, the driver will stop	
		running, the voltage range from DC24~80V	
Er 06	EPROM	Dooding on Writing EDDOM is foilure	
	happen fault	Reading or Writing EPROM is failure	
Er 07	Encoder fault	Check up Encoder wire	
Er 08	Motor fault	Motor lack phase, Something wrong with motor coil	

5.2 Problem Symptoms and Possible Causes

Symptoms	Possible Problems				
	No power				
Matania nat ratatina	Micro step resolution setting is wrong				
Motor is not rotating	Fault condition exists				
	The Driver is disabled				
Motor rotates in the wrong direction	Motor phases or encode may be connected in reverse				
The Driver in fault	Something wrong with motor coil				
	Control signal is too weak				
	Control signal is interfered				
Erratic motor motion	Wrong motor or encode connection				
	Something wrong with motor coil				
Motor stalls during	Motor is undersized for the application				
acceleration	Acceleration is set too high				
acceleration	Power supply voltage too low				
Excessive motor and	Inadequate heat sinking / cooling				
Drive heating	Automatic current reduction function not being utilized				

*Note:*Our company will provide warranty of 1 year from the delivery date and free maintenance under warranty.