

Applications

- 40GBASE-LR4 40G Ethernet links
- Infiniband QDR and DDR interconnects
- Client-side 40G Telecom connections

Description

This product is a transceiver module designed for 2m-20km optical communication applications. The design is compliant to 40GBASE-LR4 of the IEEE P802.3ba standard. The module converts 4 inputs channels (4ch) of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 40Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G694.2. It contains a duplex LC connector for the optical interface and a 148-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Functional Description

This product converts the 4-channel10Gb/s electrical input data into CWDM optical signals (light), by a driven 4-wavelength Distributed Feedback Laser (DFB) array. The light is combined by the MUX parts as a 40Gb/s data, propagating out of the transmitter module from the SMF. The receiver module accepts the 40Gb/s CWDM optical signals input, and de-multiplexes it into 4 individual 10Gb/s channels with different wavelength. Each wavelength light is collected by a discrete photo diode, and then outputted as electric data after amplified by a TIA. Figure 1 shows the functional block diagram of this product.

A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground though a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

Transceiver Block Diagram

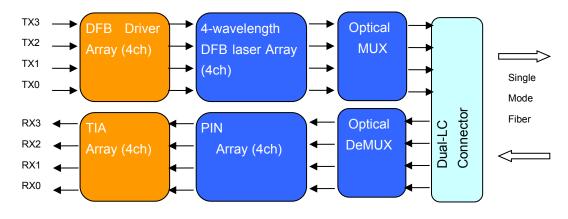
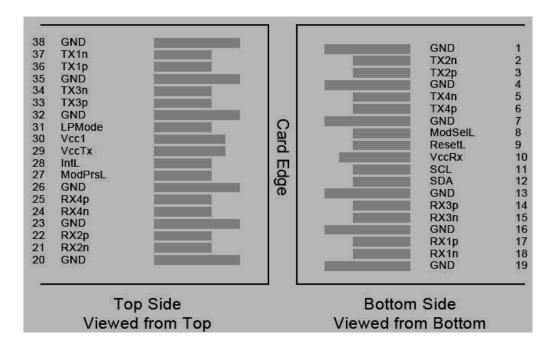



Figure 1: 40Gb/s QSFP LR4 Transceiver Block Diagram

Pin Assignment and Pin Description

Pin Definitions

PIN	Logic Symbol Name/Description		Note	
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+ 3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1

36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Note:

- GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2) VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Мах	Unit	Note
Storage Temperature	Tst	-20	85	degC	
Relative Humidity (non-condensation)	RH	0	85	%	
Operating Case Temperature	Торс	0	70	degC	
Operating Range		0.002	20	km	
Supply Voltage	VCC	-0.5	3.6	V	

Optical Characteristics

Parameter	Symbol	Min.	Typical	Мах	Unit	Notes
Wavelength Assignment	LO	1264.5	1271	1277.5	nm	
	L1	1284.5	1291	1297.5	nm	
	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	
	т	ransmitter				
Side-mode Suppression Ratio	SMSR	30	-	-	dB	
Total Average Launch Power	Ρτ	-	-	8.3	dBm	
Average Launch Power, each Lane		-7	-	2.3	dBm	
Optical Modulation Amplitude,	OMA	-4	-	+3.5	dBm	
each Lane						

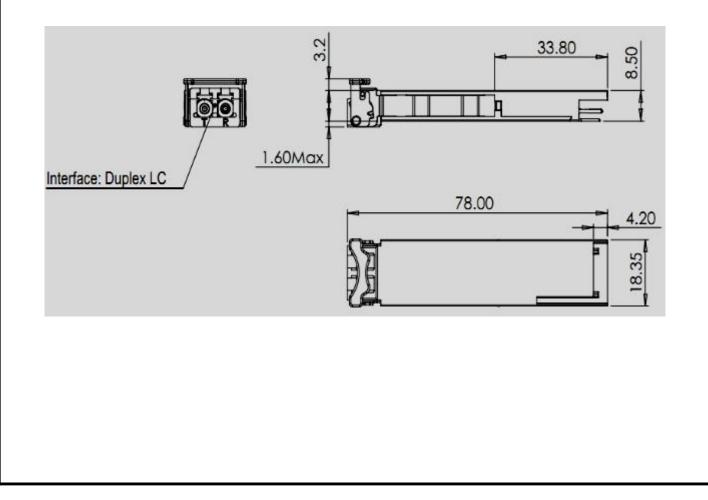
5

Difference in Launch Power between any two Lanes (OMA)			-		-		6.5		dB			
Launch Power in OMA minus Transmitter and Dispersion			-4	.8	-				dBn	n		
Penalty (TDP), each Lane							2.2		dD			
TDP, each Lane	TDP			_			2.3		dB			
Extinction Ratio Relative Intensity Noise	ER Rin		3.	5	-		- -128		dB dB/H		12dB reflection	
Optical Return Loss Tolerance					-		20		dB			
Transmitter Reflectance	Rī						-12		dB			
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}	{0.25		,0.4,0.	4,0.45,0.25,0.28,0.4}		3,0.4}						
Average Launch Power OFF Transmitter, each Lane	P _{off}	P _{off}					-30		dBm			
			Receiv	ver								
Damage Threshold	TH_{d}	:	3.3					d	Bm		1	
Average Power at Receiver Input, each Lane			13.7				2.3	dl	Bm			
Receiver Reflectance	R _R		-		-		-26	C	βB			
Receiver Power (OMA), each Lane			-		-		3.5	d	Bm			
Stressed Receiver Sensitivity in OMA, each Lane			-		-		-9.9	dl	Bm			
Receiver Sensitivity, each Lane	S _R		-		-	-	11.5	d	Bm			
Difference in Receive Power between any two Lanes (OMA)							7.5	C	βB			
Receive Electrical 3 dB upper Cutoff Frequency, each Lane							12.3	G	θHz			
Condi	tions of S	Stres	ss Rec	eiver	Sensiti	vity	Test ²					
Vertical Eye Closure Penalty, each Lane					1.6			C	βB			
Stressed Eye Jitter, each Lane				().3			I	UI			N

1) The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

6

2) Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.


7

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating temperature and supply voltage unless otherwise specified.

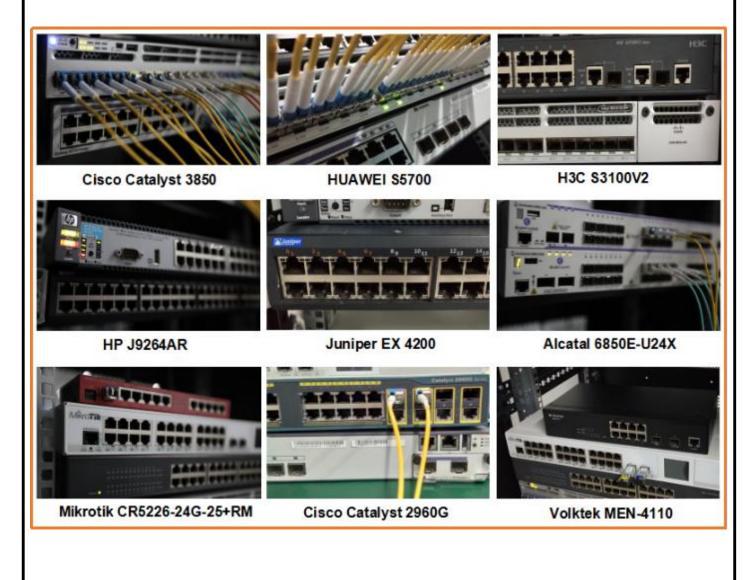
Parameter	Symbol	Min.	Typical	Мах	Unit	Notes
Supply Voltage	Vccl, VccTx, VccRx	-0.5	-	3.6	V	
Data Rate, each Lane		-	10.3125	11.2	Gbps	

PCB Layout and Bezel Recommendations

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:1993:+A1:1997+A2:2001. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007)


Regulatory Compliance

Feature	Reference	Performance		
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards		
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class B	Compatible with standards		
	(CISPR 22A) FDA 21CFR 1040.10, 1040.11 IEC/EN			
Laser Eye Safety	60825-1, 2	Class 1 laser product		
Component Recognition	IEC/EN 60950, UL	Compatible with standards		
ROHS	2002/95/EC	Compatible with standards		
EMC	EN61000-3	Compatible with standards		

Compatibility Test

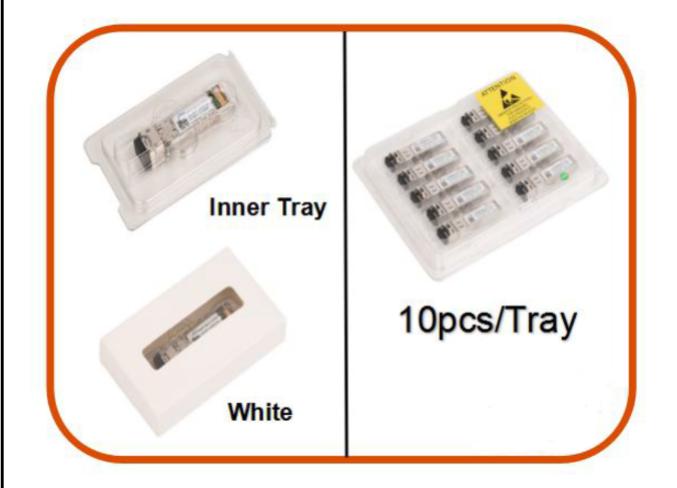
In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.


Product Initial Test

Switch Testing

Product Final Test

Packaging

LIGHTX provides two kinds of packaging, 10pcs/Tray and individual package.

Company: SHENZHEN LIGHTX TECHNOLOGY CO.,LTD. Address:Block B, 2F, Building 15, No.1008. Songbai Road, Xili Street, Nanshan District, Shenzhen, P.R.China, 518055 Tel: +86 755 8663 5230

Fiber Optic Transceivers Copyright 2011—2017 lightecs.com All Rights Reserved