

QSFP28 Series

QSFP28

QSFP28-100G-ER4L

Module QSFP28 100GBASE-ER4 100G 1310nm 2SM LC 30KM DDM

- Hot pluggable QSFP28 MSA form factor
- ➤ Compliant to Ethernet 100GBASE-ER4 Lite and OTN OTU4 4L1-9C1F Lite
- Up to 25km reach for G.652 SMF without FEC
- Up to 30km reach for G.652 SMF with FEC
- ➤ Single +3.3V power supply
- ➤ Operating case temperature: 0~70°C
- Transmitter: cooled 4x25Gb/s LAN WDMTOSA (1295.56, 1300.05, 1304.58, 1309.14nm)
- Receiver: 4x25Gb/s PIN ROSA
- 4x28G Electrical Serial Interface (CEI-28G-VSR)
- Maximum power consumption 4W
- Duplex LC receptacle
- > RoHS-6 compliant

Applications

- 100GBASE-ER4 Ethernet Links
- Infiniband QDR and DDR interconnects

Description

This product is a 100Gb/s transceiver module designed for optical communication applications compliant to Ethernet IEEE 802.3ba standard. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE 802.3ba standard. The high performance cooled LAN WDM DFB transmitters and high sensitivity APD receivers provide superior performance for 100Gigabit applications up to 30km links and compliant to optical interface with 100GBASE-ER4 lite requirements.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Regulatory Compliance

Feature	Standard	Performance
Electromagnetic Interference (EMI)	FCC Part 15 Class B	Compatible with standards
, ,	EN 55022:2010, Class B	
Electromagnetic susceptibility (EMS)	EN 55024:2010	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I
	EN60950, EN (IEC) 60825-1,2	laser product

Absolute Maximum Ratings

The operation in excess of any absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	TS	-40	85	degC	
Operating Case Temperature	TOP	0	70	degC	
Power Supply Voltage	VCC	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold, each Lane	THd	-3		dBm	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	TOP	0		70	degC	Operating Case
						Temperature
Power Supply Voltage	VCC	3.135	3.3	3.465	V	Power Supply Voltage
Data Rate, each Lane			25.78125		Gb/s	Data Rate, each Lane
Control Input Voltage High		2		Vcc	V	Control Input Voltage
						High
Control Input Voltage Low		0		0.8	V	Control Input Voltage Low
Link Distance with G.652	D	0.002		30	km	Link Distance with G.652

Electrical Characteristics

Parameter	Test	Min	Typical	Max	Unit	Notes
	Point					
Power Consumption				4	W	
Supply Current	Icc			1.21	Α	
Single-ended Input		-0.3		4.0	V	Referred to TP1
VoltageTolerance (Note 1)						signal common
AC Common Mode InputVoltage		15			mV	RMS
Tolerance						
Differential Input VoltageSwing		50			mVpp	LOSA Threshold
Threshold						
Differential Input VoltageSwing	Vin,pp	190		700	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal
						common
AC Common Mode OutputVoltage				7.5	mV	RMS
Differential Output VoltageSwing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	

Notes:

1. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

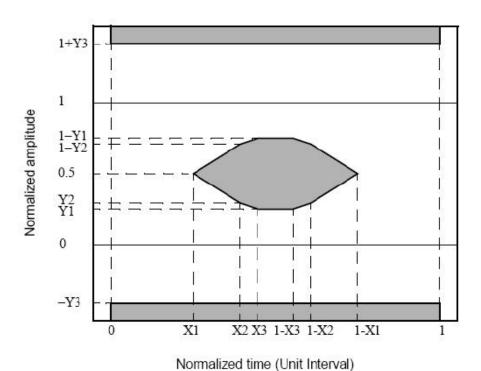
Optical Characteristics

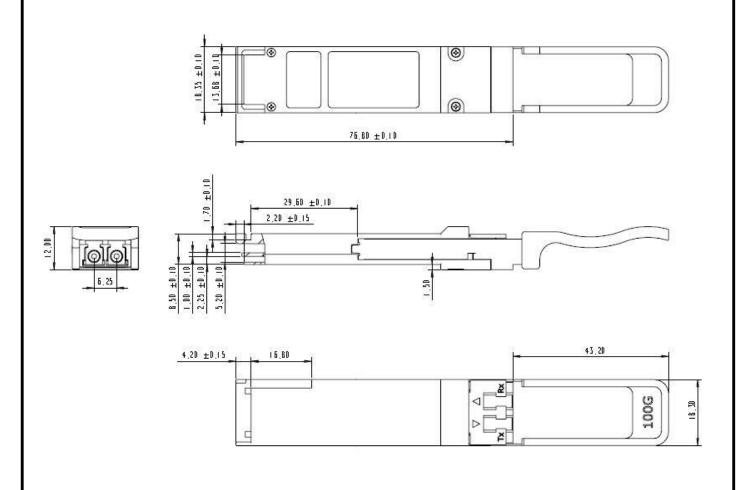
Parameter	Symbol	Min	Typical	Max	Unit	Notes
	L0	1294.53	1295.56	1296.59	nm	
NA/avalan ath Assistants and	L1	1299.02	1300.05	1301.09	nm	
Wavelength Assignment	L2	1303.54	1304.58	1305.63	nm	
	L3	1308.09	1309.14	1310.19	nm	
		Transm	itter			
Side Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	PT			10.5	dBm	
Average Launch Power,each Lane	PAVG	-1.9		4.5	dBm	
OMA, each Lane	POMA	0.1		4.5	dBm	1
Difference in Launch Power	Ptx,diff			3.6	dB	
between any Two Lanes (OMA)						
Launch Power in OMA minus						
Transmitter and Dispersion Penalty		-0.65			dBm	
(TDP), each Lane						
TDP, each Lane	TDP			2.5	dB	
Extinction Ratio	ER	4.5			dB	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			-12	dB	
Eye Mask{X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4,				
		0.45, 0.25,				
		0.28, 0.4}				
Average Launch Power OFF	Poff	-		-30	dBm	
Transmitter, each Lane						
		Receiv	/er			<u>'</u>
Damage Threshold, each Lane	THd	-3			dBm	3
Total Average Receive Power				3	dBm	
Average Receive Power, each		-14.7		-4.9	dBm	for 25km Link
Lane						Distance
Average Receive Power, each		-17.7		-4.9	dBm	for 30km Link
Lane						Distance
Receive Power (OMA), each Lane				-1.9	dBm	
Receiver Sensitivity (OMA),	057:			40.45		for BER = 1x10 ⁻¹²
eachLane	SEN			-13.45	dBm	
Stressed Receiver						
Sensitivity(OMA), each Lane				-11.45	dBm	for BER = $1x10^{-12}$
Receiver Sensitivity (OMA),	0511			40.45	I.E.	for BER = $5x10^{-5}$
eachLane	SEN			-16.45	dBm	
Stressed Receiver						
Sensitivity(OMA), each Lane				-14.45	dBm	for BER = $5x10^{-5}$
Receiver Reflectance	RR			-26	dB	

Difference in Receive Power	Prx,diff			5.5	dB	
between any Two Lanes (OMA)						
LOS Assert	LOSA		-26		dBm	
LOS Deassert	LOSD		-24		dBm	
LOS Hysteresis	LOSH	0.5			dB	
Receiver Electrical 3 dB upper	Fc			31	GHz	
Cutoff Frequency, each Lane						
Conditi	ons of Str	ess Receive	er Sensitivity	/ Test (Not	e 5)	
Vertical Eye Closure Penalty,			1.5		dB	
eachLane			1.5		uБ	
Stressed Eye J2 Jitter, each Lane			0.3		UI	
Stressed Eye J9 Jitter, each Lane			0.47		UI	

Notes:

- 1.Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.
- 2. See Figure 1 below.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 5. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.



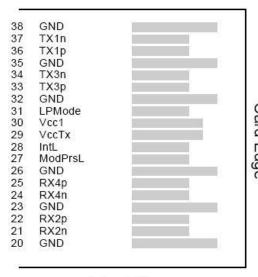

Figure 1. Eye Mask Definition

Digital Diagnostic Functions

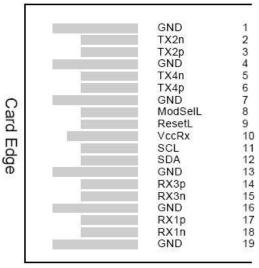
The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temp
Supply voltage monitor absolute error	DMI _VCC	-0.1	0.1	V	Full operating range
Channel RX power monitor absolute error	DMI_RX	-3	3	dB	Per channel
Channel Bias current monitor	DMI_Ibias	-10%	10%	mA	Per channel
Channel TX power monitor absolute error	DMI_TX	-3	3	dB	Per channel

Mechanicl Dimensions


ESD

This transceiver is specified as ESD threshold 1kV for SFI APDs and 2kV for all other electrical input APDs, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

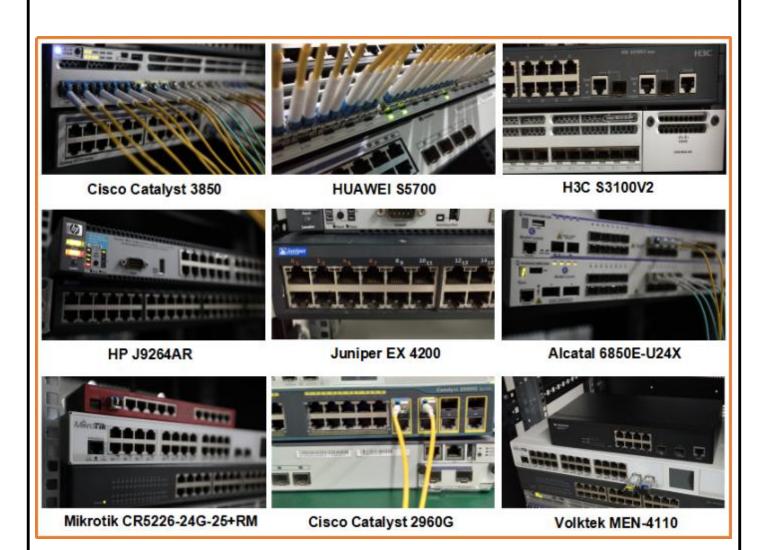

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

PIN Assignment and Description

Top Side Viewed from Top

Bottom Side Viewed from Bottom

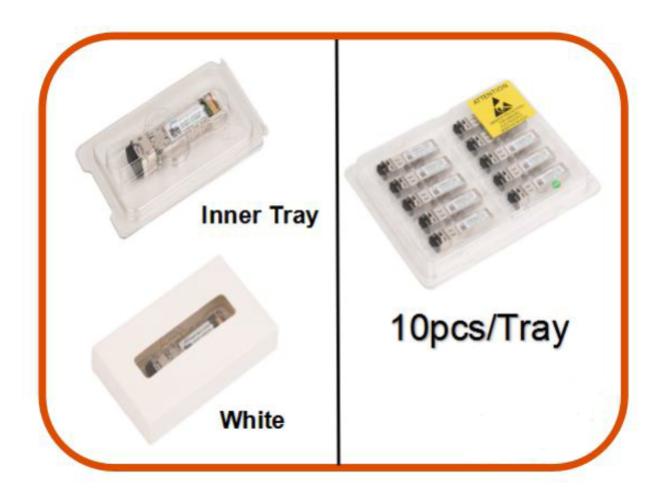

Pin Assignment

PIN#	Logic	Symbol	Description	Notes
1		GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	
20		GND	Ground	
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	
30		Vcc1	+3.3 V Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.


Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Packaging

LIGHTX provides two kinds of packaging, 10pcs/Tray and individual package.

Company: SHENZHEN LIGHTX TECHNOLOGY CO.,LTD.

Address: Block B, 2F, Building 15, No.1008. Songbai Road, Xili Street, Nanshan District,

Shenzhen, P.R.China, 518055

Tel: +86 755 8663 5230