COMPRESSOR TECHNICAL DATA

EMC70CLT

DATA

GENERAL DATA	
Model	EMC70CLT
Туре	Hermetic Reciprocating
Technology	ON/OFF
Compressor Application	LBP
Expansion Device	Capillary Tube
Compressor Cooling	Static/220
НР	1/5
Starting Torque	LST
Plant	SLOVAKIA

ELECT	TRICAL	DATA

Start Winding Resistance	14.75 Ω at 25°C
Run Winding Resistance	19.97 Ω at 25°C
Locked Rotor Amperage (LRA) 50Hz	5.3 A
Rated Load Amperage (LMBP) at 50 Hz	0.8 A
Rated Load Amperage (HBP) at 50 Hz	1 A

		CAL	DATA
\mathbf{N}	L H A		$D\Delta T\Delta$

Displacement	11.14 cm³
Oil Charge	150 ml
Oil Type	ALQUILB
Oil Viscosity	IS05
Weight	8.1 Kg

ELECTRICAL COMPONENTS

CSR CSIR BOX	No
Starting Device Type	PTC
Overload Protection	AE37FQ

EXTERNAL CHARACTERISTICS

Base Plate	SMALL
Tray Holder	YES

Connector	Internal Diameter	Shape	Material
Suction	6.1 mm	SLANTED 42° UP + 45° TO BACK	COPPER
Discharge	5.1 mm	SLANTED 42° UP + 45° TO BACK	COPPER
Process	6 mm	SLANTED 43° UP + 45° TO BACK	COPPER(OD)

PERFORMANCE

TESTED CONDITIONS

Tested Refrigerant	R-600a
Tested Application	LBP
Tested Standard	EN12900
Tested Cooling	Static
Tested Voltage	220 V
Tested Frequency	50 Hz
Max Refrigerant Charge	150 g
Refrigerant Temperature	Dew

RATED POINTS

Condensing Temperature °C	Evaporating Temperature °C	Cooling Capacity W	Efficiency W/W	Power Consumption W	Current A	Gas Flow Rate kg/h	
40	-35	101	1.44	70	-	1.23	

Test Condition: Subcooling O K, Return Gas 20 ℃. Data are an indication of performance based simulation.

PERFORMANCE CURVE

Condensing Temperature 35°C

Evaporating Temperature °C	Cooling Capacity W	Efficiency W/W	Power Consumption W	Current A	Gas Flow Rate kg/h
-35	110	1.60	69	-	1.28
-30	147	1.83	80	-	1.72
-25	192	2.08	92	-	2.24
-20	245	2.35	104	-	2.87
-15	308	2.63	117	-	3.61
-10	379	2.94	129	-	4.47

Test Condition: Subcooling O K, Return Gas 20 °C. Data are an indication of performance based simulation.

PERFORMANCE CURVE

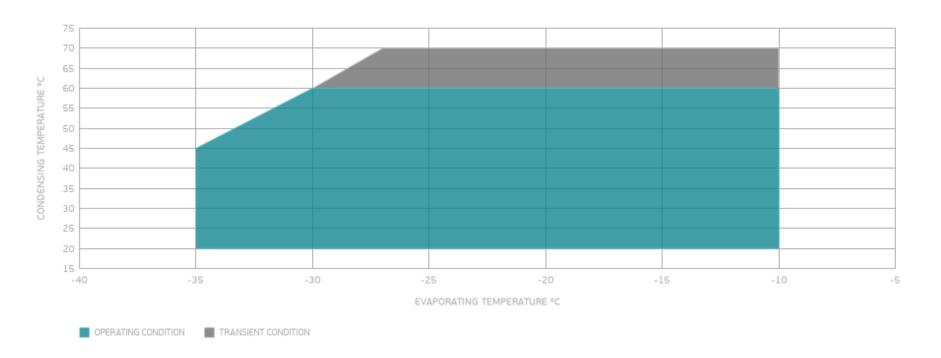
Condensing Temperature 45°C

Evaporating Temperature °C	Cooling Capacity W	Efficiency W/W	Power Consumption W	Current A	Gas Flow Rate kg/h
-35	93	1.29	72	-	1.18
-30	126	1.49	84	-	1.60
-25	166	1.69	98	-	2.12
-20	215	1.89	114	-	2.74
-15	271	2.09	130	-	3.48
-10	337	2.29	147	-	4.33

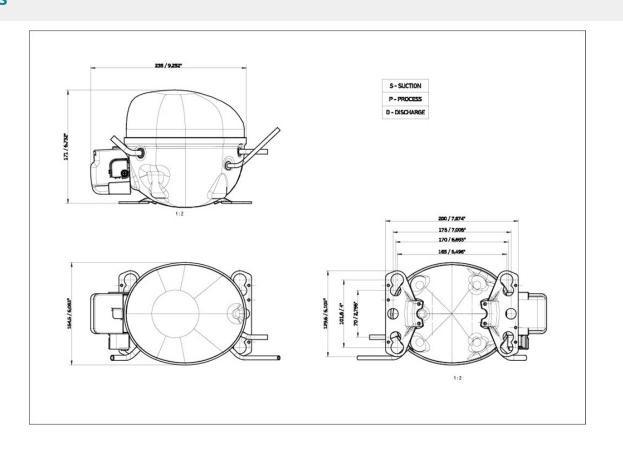
 $Test\ Condition:\ Subcooling\ O\ K,\ Return\ Gas\ 20\ ^\circ C.\ Data\ are\ an\ indication\ of\ performance\ based\ simulation.$

PERFORMANCE CURVE

Condensing Temperature 55°C


Evaporating Temperature °C	Cooling Capacity W	Efficiency W/W	Power Consumption W	Current A	Gas Flow Rate kg/h
-30	105	1.22	86	-	1.48
-25	141	1.39	102	-	1.99
-20	184	1.54	120	-	2.59
-15	235	1.69	139	-	3.32
-10	293	1.84	160	-	4.16

Test Condition: Subcooling O K, Return Gas 20 °C. Data are an indication of performance based simulation.


Evaporating Temperature °C	Cooling Capacity W	Efficiency W/W	Power Consumption W	Current A	Gas Flow Rate kg/h
-25	117	1.14	102	-	1.84
-20	154	1.27	122	-	2.43
-15	198	1.38	144	-	3.14
-10	250	1.49	168	-	3.97

Test Condition: Subcooling O K, Return Gas 20 °C. Data are an indication of performance based simulation.

ENVELOPE

EXTERNAL DIMENSIONS

