
Техническое описание

Преобразователь температуры ТМТ112, созданный по технологиям ТЕМР® и HART®, для монтажа на ДИН-рейке

Универсальный преобразователь температуры для резистивных датчиков температуры (РДТ), термопар, преобразователей сопротивления и напряжения, с поддержкой протокола HART®

Области применения

- Преобразователь температуры с протоколом НАRТ® для преобразования различных входных сигналов в масштабируемый аналоговый выходной сигнал 4...20мА.
- Вход: резистивный датчик температуры (РДТ); термопара (ТП); преобразователь сопротивления (Ом); преобразователь напряжения (мВ).
- Протокол HART® для работы с внешним или панельным модулем через ручной программатор (DXR275, DXR375) или ПК (например, ReadWin® 2000 или FieldCare).
- Монтаж на ДИН-рейке согласно IEC 60715.

Особенности и преимущества

- Универсальные параметры настройки посредством протокола HART® для различных входных сигналов.
- 2-проводная технология, аналоговый выход 4...20 мА.
- Высокая точность в общем диапазоне температур окружающей среды.

- Аварийный сигнал при отказе датчика или коротком замыкании, предварительно настраиваемый согласно NAMUR NE 43.
- ЭМС согласно NAMUR NE 21, СЕ.
- Сертифицированный компонент UL 3111-1.
- CSA общего назначения.
- Сертификация взрывозащищенного исполнения:
 - ATEX Ex ia;
 - CSA IS;
 - C3A 13– FM IS.
- Соответствие SIL2.
- Гальваническая развязка.
- Моделирование выхода.
- Функция индикатора минимального/ максимального значения процесса.
- Пользовательская линеаризация.
- Согласование кривой линеаризации.
- Пользовательские параметры настройки диапазона измерения или расширенное меню «SETUP» (см. опросный лист, стр. 7).

Принцип действия и архитектура системы

Принцип измерения

Электронное измерение и преобразование входных сигналов для промышленного измерения температуры.

Измерительная система

Преобразователь температуры ТМТ112, созданный по технологиям iTEMP® и HART®, для монтажа на ДИН-рейке представляет собой 2-проводной преобразователь с аналоговым выходом. В преобразователе предусмотрен ввод результатов измерений для резистивных датчиков температуры (РДТ) в 2-, 3- или 4-проводном подключении, термопар и преобразователей напряжения. Настройка ТМТ112 выполняется с использованием протокола HART® с ручным программатором (DXR275, DXR375) или ПК (например, программное обеспечение для настройки ReadWin® 2000 или FieldCare).

Вход

Измеряемая величина

Температура (линейная зависимость температуры), сопротивление и напряжение.

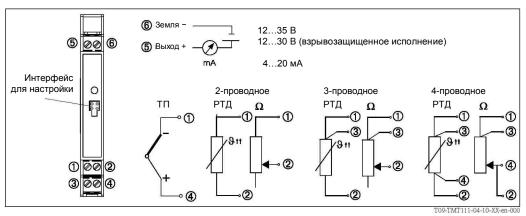
Диапазон измерения

В зависимости от подключения датчика и входного сигнала. Преобразователь обеспечивает анализ в нескольких различных диапазонах измерения.

Тип входа

	Тип	Диапазоны измерения	Минимальный диапазон измерения
	Pt100 Pt500 Pt1000 coгласно IEG 751 (α = 0,00835) Pt100 coгласно JIS C 1604-81 (α = 0,003916)	-200850 °C (-3281562 °F) -200250 °C (-328482 °F) -200250 °C (-238482 °F) -200649 °C (-3281200 °F)	10 K (18 °F) 10 K (18 °F) 10 K (18 °F) 10 K (18 °F)
Резистивный датчик температуры (РДТ)	Ni100 Ni500 Ni1000 coгласно DIN 43760 (α = 0,006180)	-60250 °C (-76482 °F) -60150 °C (-76302 °F) -60150 °C (-76302 °F)	10 K (18 °F) 10 K (18 °F) 10 K (18 °F)
	 тип подключения: 2-, 3- и 4-прово в 3-проводной системе предусмо максимальное сопротивление ка ток датчика: ≤ 0,2 мА. 	грена программная компенсация сопротивлени	я кабеля (030 Ом);
Преобразователь сопротивления	Сопротивление, Ом	10400 Ом 102000 Ом	10 Ом 100 Ом
В (PtRh30-PtRh6) С (W5Re-W26Re)¹ D (W3Re-W25Re)¹ E (NiCr-CuNi) J (Fe-CuNi) L (Fe-CuNi)² N (NiCrSi-NiSi) R (PtRh13-Pt) S (PtRh10-Pt) T (Cu-CuNi)² U (Cu-CuNi)² U (Cu-CuNi)²		0+1820 °C (323308 °F) 0+2320 °C (324208 °F) 0+2495 °C (324523 °F) -270+1000 °C (-4541832 °F) -210+1200 °C (-3462192 °F) -270+1372 °C (-4542501 °F) -200+900 °C (-3281652 °F) -270+1300 °C (-4542372 °F) -50+1768 °C (-583214 °F) -50+1768 °C (-583214 °F) -270+400 °C (-454752 °F) -200+600 °C (-3281112 °F)	500 K (900 °F) 500 K (900 °F) 500 K (900 °F) 50 K (90 °F) 500 K (900 °F) 500 K (900 °F) 500 K (900 °F) 50 K (90 °F) 50 K (90 °F)
	Внутренний холодный спай (Pt10Точность на холодном спае: ±1 К	00)	
Преобразователи напряжения	Преобразователь, милливольты	-1075 мВ	5 мВ

 $^{^{\}rm 1}$ В соответствии с ASTM E988


² В соответствии с DIN 43710

Выход

Выходной сигнал	Аналоговый 420 мА, 204 мА
Аварийный сигнал	 сужение диапазона измерения: линейное падение до 3,8 мА; превышение диапазона измерения: линейный подъем до 20,5 мА; поломка датчика; короткое замыкание датчика (не для термопар ТП): < 3,6 мА или > 21,0 мА (для настройки > 21,0 мА, выход > 21,5 мА).
Нагрузка	Макс. (V _{питания} – 12 B) / 0,022 A (токовый выход)
Поведение при линеаризации/передаче	Линейная температура, линейное сопротивление, линейное напряжение
Фильтр	Цифровой фильтр 1 степени: 0100 сек.
Гальваническая развязка	U = 2 кВ пер. тока (вход/выход)
Минимальное потребление тока	≤ 3,5 mA
Ограничение тока	≤23 MA
Задержка срабатывания	4 сек. (при включении Ia ≈ 3,8 мA)

Электропитание

Электрическое подключение

Подключения клемм преобразователя температуры

Для управления устройством по протоколу HART® (клеммы 5 и 6) необходимо сопротивление нагрузки сигнальной схемы не менее 250 Ом.

Напряжение питания U_b = 12...35 B, с защитой от перемены полярности

Остаточная пульсация Допустимая пульсация $U_{ss} \le 3$ В при $U_b \ge 15$ В, $f_{\text{макс.}} = 1$ к Γ ц

Точностные характеристики

Время отклика

1 сек

Нормальные рабочие условия

Температура калибровки: +25 °C ± 5 K (77 °F ± 9 °F)

Максимальная погрешность измерений

Примечание.

Данные погрешности имеют типичные значения и соответствуют стандартному отклонению \pm 3 σ (нормальное распределение), т.е. 99,8 % всех значений измеряемых величин имеют заданную или более высокую точность.

	Тип	Точность измерения ¹
Резистивный датчик температуры (РДТ)	Pt100, Ni100 Pt500, Ni500 Pt1000, Ni1000	0,2 К или 0,08 % 0,5 К или 0,20 % 0,3 К или 0,12 %
Термопара (ТП)	K, J, T, E, L, U N, C, D R, S B	обычно 0,5 К или 0,08 % обычно 1,0 К или 0,08 % обычно 1,4 К или 0,08 % обычно 2,0 К или 0,08 %

	Диапазон измерения	Точность измерения ¹
Преобразователь сопротивления (Ом)		± 0,1 Ом или 0,08 % ± 1,5 Ом или 0,12 %
Преобразователь напряжения (мВ)	-1075 мВ	± 20 мкВ или 0,08 %

Диапазон физическ	их входов датчиков
10400 Ом	Полиномиальный РДТ, Pt100, Ni100
102000 Ом	Pt500, Pt1000, Ni1000
-1075 мВ	Тип термопары: C, D, E, J, K, L, N, U
-1035 мВ	Тип термопары: B, R, S, T

Воздействие напряжения питания

≤ ± 0,01 %/В отклонение от 24 В

Проценты относятся к верхнему пределу диапазона измерения.

Влияние температуры окружающей среды (температурный дрейф)

Полный температурный дрейф = температурный дрейф на входе + температурный дрейф на выходе

Влияние на погрешность п	ри изменении температуры окружающей среды на 1 K (1,8 °F):
Вход 10400 Ом	Тип. 0,0015 % значения измеряемой величины, мин. 4 мОм
Вход 102000 Ом	Тип. 0,0015 % значения измеряемой величины, мин. 20 мОм
Вход -1075 мВ	Тип. 0,005 % значения измеряемой величины, мин. 1,2 мкВ
Вход -1035 мВ	Тип. 0,005 % значения измеряемой величины, мин. 0,6 мкВ
Выход 420 мА	Тип. 0,005 % шкалы

Типичная чувствительность резистивных датчиков	температуры:
Pt: 0,00385 × Rноминал/K	NI: 0,00617 × Rноминал/К

Пример для Pt100: 0,00385 x 100 Om/K = 0,385 Om/K

Типичная чувств	ительность термо	пар:			
В: 10 мкВ/К	С: 20 мкВ/К	D: 20 мкB/K	Е: 75 мкВ/К	J: 55 мкB/K	К: 40 мкВ/К
L: 55 мкВ/К	N: 35 мкВ/К	R: 12 мкВ/К	S: 12 мкВ/К	Т: 50 мкВ/К	U: 60 мкВ/К

 $^{^1\,\%}$ соответствует регулируемому диапазону измерения. Из двух значений следует применять большее.

Пример расчета погрешности измерения, обусловленной дрейфом температуры окружающей среды:

Температурный дрейф на входе $\Delta\theta$ = 10 K (18 °F), Pt100, диапазон измерения 0...100 °C (32...212 °F) Максимальная температура процесса: 100 °C (212 °F);

Значение измеряемого сопротивления: 138,5 Ом (IEC 60751) при максимальной температуре процесса

Типичный температурный дрейф, Ом: $(0,0015\% \text{ or } 138,5 \text{ Om}) \times 10 = 0,02078 \text{ Om}$ Преобразование в градусы Кельвина: 0,02078 Om / 0,385 Om / K = 0,05 K (0,09 °F)

Влияние нагрузки $\leq \pm 0.02 \%/100 \text{ Ом}$

Значения относятся к верхнему пределу диапазона измерения

Долгосрочная стабильность

≤ 0,1К/год или ≤ 0,05 %/год

Значения в стандартных рабочих условиях % соответствует установленной шкале. Действительным является большее значение.

Влияние холодного спая

Pt100 IEC 60751 Кл. В (внутренний контрольный спай для термопар)

Условия монтажа

Инструкции по монтажу

Ориентация

Без ограничений

Условия окружающей среды

Пределы температур
окружающей среды

-40...+85 °C (-40...185 °F), информацию относительно взрывоопасных зон см. в соответствующих сертификатах взрывозащищенного исполнения

Температура хранения

-40...+100 °C (-40...212 °F)

Климатический класс

Согласно ІЕС 60654-1, класс С

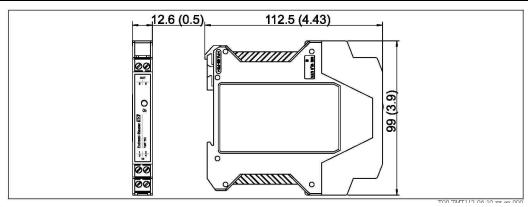
Конденсат

Допускается

Класс защиты

IP 20 (NEMA 1)

Ударопрочность и виброустойчивость


4г / 2 ...150 Гц согласно IEC 60 068-2-6

Электромагнитная совместимость (ЭМС)

Паразитное излучение и помехозащищенность согласно IEC 61326 и NAMUR NE 21

Механическая конструкция

Конструкция, размеры

Корпус для ДИН-рейки согласно ІЕС 60715; размеры в мм (дюймах)

Bec	Около 90 г (3,2 унции)
Материал	Корпус: пластмасса PC/ABS, UL 94V0
Клеммы	Снабженные клапанами контактные зажимы с винтовым креплением, размер твердой жилы не более 2,5 мм² (16 AWG), или жилы со втулками
	Интерфейс пользователя
Элементы индикации	Светящийся желтый светодиодный индикатор означает следующее: прибор находится в рабочем
	состоянии. С программным обеспечением ReadWin® 2000 или FieldCare возможно отображение текущего значения измеряемой величины.
Элементы управления	Непосредственно на преобразователе температуры отсутствуют элементы управления. Настройка преобразователя температуры выполняется посредством дистанционного управления при помощи программного обеспечения ReadWin® 2000 или FieldCare.
Дистанционное	Настройка
управление	Ручной программатор DXR275, DXR375 или ПК с Commubox FXA191/FXA195 и системным программным обеспечением (ReadWin® 2000 или FieldCare).
	Интерфейс
	Интерфейс для ПК — Commubox FXA191 (RS232) или FXA195 (USB).
	Настраиваемые параметры
	Тип датчика и способ подключения, единицы измерения (°C/°F), диапазон измерения, внутренняя или внешняя компенсация сопротивления кабеля при 2-х проводном подключении, значения при ошибке, выходной сигнал (420мА или 204 мА), цифровой фильтр (демпфирование), смещение, идентификатор точки измерения + дескриптор (8 + 16 символов), моделирование выхода, пользовательская линеаризация, функция отображения максимального и минимального значений измеряемой величины.
	Сертификаты и нормативы
Маркировка СЕ	Прибор соответствует всем требованиям директив EC. Компания Endress+Hauser подтверждает успешное тестирование прибора нанесением маркировки CE.
Сертификаты на применение во взрывоопасных зонах	Для получения дополнительной информации о доступных взрывозащищенных вариантах исполнения прибора (ATEX, CSA, FM и т.д.) обратитесь в региональное представительство Endress+Hauser. Все соответствующие данные для взрывоопасных зон приведены в отдельной документации по взрывозащищенному исполнению. При необходимости запросите копии в региональном представительстве Endress+Hauser.
UL	Сертифицированный компонент UL 3111-1
Другие стандарты и рекомендации	 • IEC 60529: Степень защиты корпуса (код IP) • IEC 61010: Безопасность электрических контрольно-измерительных приборов и лабораторного использования. • IEC 61326: Электромагнитная совместимость (требования по ЭМС) • NAMUR Рабочая группа стандартов контрольно-измерительной технологии в химической промышленности. (www.namur.de).
CSA GP	CSA общего назначения

Размещение заказа

Опросный лист	ый лист Опросный лист преобра		зователя температуры iTEMP производства Endress+Hauser Пользовательская настройка			
	Стандартная настройн	ка				
	Датчик		ТΠ	() B () C () K () L () T () U	()D ()E ()J ()N ()R ()S	
			РДТ	() Pt100 () Ni100	() Pt500 () Pt1000 () Ni500 () Ni1000	
				() 2-проводной	()3-проводной ()4-провод	цной
	Единица измерения		() °C	() °F		
	Диапазон [не PROHBUS-PA)	Нижняя шкала			Примечание. Диапазон и мин. шкала (см. «Техн. описание»)	
	I	Верхняя шкала			(cm « cm cm cm cm	
	Адрес системной шины (только PROFIBUS-PA)				[0126]	
	Расширенная настрой	ка				
	Контрольный спай	()вн	утренний	() внешн.	(только .80°C; 32176°F]) TC)
	Компенсация сопротивл провода	пения			20 Ом] (только 2-проводной Р 30 Ом] (только НАRT, РА 2-про]	
	Режим отказа	()≤3	3,6 мА	() ≥ 21,0 mA	(не PROFIBUS-PA]	
	Выход	()4	.20 мА	()204 мА	(не PROFIBUS-PA]	
	Фильтр				., 2,, 8 сек] (только РСР) I, 2,,100 сек]	
	Смещение			. [-9.	9 0 +9.9K]	
	Название РСР					
	Связь HART	(HART: 8 симв. На	азвание + 16 симв.	Дескриптор, PROFIBUS-PA	: 32 симв.)	
	PROFIBUS-PA					
					Endress+Hauser People for Process Automation	謡

Комплектация изделия

Далее приведена информация о позициях, доступных для заказа. Эта информация не является окончательной и может быть частично неактуальной. Дополнительную информацию можно получить в региональном представительстве Endress+Hauser.

Преобразователь температуры ТМТ112, созданный по технологиям $TEMP^{\otimes}$ и $HART^{\otimes}$, для монтажа на ДИНрейке

Преобразователь температуры, протокол HART. Область применения: РДТ, ТП, Ом и мВ. 2-проводной 4...20 мА, SIL2, гальваническая изоляция. Реакция при отказе:

Cep	тиф	икаты		
A	Для	я безопасных зон		
В	ATI	EX II 2(1) G EEx ia IIC T	4/T5/T6	
С	FM	IS, класс I, раздел. 1+2	, группы А, В, С, D	
D	CSA	IS, класс I, раздел. 1+	2, группы A, B, C, D	
3	ATI	EX II3G Ex nA IIC T4/T5	/T6	
	CSA	общего назначения		
	Под	цключение для настро	йки	
	A	Заводская настройка	Pt100 3-проводной 010	0 °C
	1	Термопара (ТП)		
	2	РДТ, 2-проводное		
	3	РДТ, 3-проводное		
	4	РДТ, 4-проводное		
		тройка: тип датчика		
	A		Pt100 3-проводной 010	0 °C
	В	Тип В	01820 °C	мин. шкала 500 К
	C	Тип С	02320 °C	мин. шкала 500 К
	D	Тип D	02495 °C	мин. шкала 500 К
	E	Тип Е	−2001000 °C	мин. шкала 50 К
	J	Тип Ј	-2001200 °C	мин. шкала 50 К
	K	Тип К	-2001372 °C	мин. шкала 50 К
	L	Тип L	-200900 °C	мин. шкала 50 К
	N	Тип N	-2701300 °C	мин. шкала 50 К
	R	Тип R	−501768 °C	мин. шкала 500 К
	S	Тип S	-501768°C	мин. шкала 500 К
	T	Тип Т	-200400 °C	мин. шкала 50 К
	U	Тип U	-200600 °C	мин. шкала 50 К
	v	Преобразователь нап	ряжения –10 75 мВ, ми	н. шкала 5 мВ
	\mathbf{w}	Pt100 согласно JIS	-200649 °C	мин. шкала 10 К
		C1604-81		
	1	Pt100	-200850 °C	мин. шкала 10 К
		согласно ІЕС 60751		
	2	Ni100	−60250 °C	мин. шкала 10 К
	3	Pt500	-200250 °C	мин. шкала 10 К
	4	Ni100	−60150 °C	мин. шкала 10 К
	5	Pt1000	-200250 °C	мин. шкала 10 К
	6	Ni100	-60150 °C	мин. шкала 10 К
	7	Преобразователь соп	ротивления 10 400 Ом,	мин. шкала 10 Ом
	8	Преобразователь соп	ротивления 102000 Ом,	мин. шкала 100 Ом
		Настройка		
		А Заводская настро	йка Pt100 3-проводной 0	100 °C
		В Диапазон измере	ния, см. дополнительную	спецификацию
		С Диапазон настро	йки ТП, см. опросный лис	

8 Endress+Hauser

Дополнительная опция **А** | Стандартное исполнение

← Код заказа

TMT112-

Сертификат заводской калибровки по 6 точкам

Аксессуары

- Commubox FXA191 (RS232) или FXA195 (USB)
 - **Код заказа:** FXA191-... или FXA195-...
- Программное обеспечение для ПК: ReadWin® 2000 или FieldCare ReadWin® 2000 может быть бесплатно загружено через Интернет по следующему адресу: www.endress.com/readwin
- Ручной программатор «HART® Communicator DXR375», код заказа: DXR375-...

Документация

- Краткая инструкция по эксплуатации преобразователя температуры ТМТ112, созданного по технологиям iTEMP® и HART®, для монтажа на ДИН-рейке (КА193R/09/а3)
- Руководство по функциональной безопасности TMT112 (SD010R/09/ru)
- Дополнительная документация по использованию во взрывоопасных зонах ATEX II 2(1) G Ex ia IIC (XA022R/09/a3) ATEX II3G Ex nA II (XA055R/09/a3)
- Руководство по функциональной безопасности ТМТ112 (SD010R/09/ru)

Региональное представительство

000 «Эндресс+Хаузер» 117105, РФ, г. Москва Варшавское Шоссе, д. 35, стр. 1, 5 этаж БЦ «Ривер Плаза»

Тел. +7(495)783-2850 Факс +7(495)783-2855 www.ru.endress.com info@ii.endress.com

