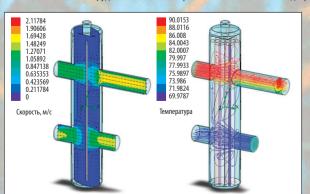

ГИДРАВЛИЧЕСКАЯ СТРЕЛКА С ВОЗМОЖНОСТЬЮ УДАЛЕНИЯ ВОЗДУХА И ШЛАМА

систем с большим количеством компонентов требуется сбалансированное гидравлическое равновесие. Этому способствует эффективное удаление воздушных пузырьков и частиц шлама в большом количестве для бесперебойного функционирования всей системы.

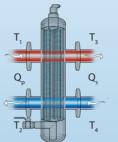

Как правило, для этого требуются 3 различных компонента. Аппарат SpiroCross наоборот объединяет эти 3 функции в одном компактном конструктивном элементе. Вы экономите не только на монтаже и при приобретении оборудования, а также в расходах на техническое обслуживание.

Уникальная трубка Spiro обеспечивает хорошее распределение жидкости при помощи компактной конструкции аппарата Spirocross. Так как спускной кран находится со стороны, то сепаратор может монтироваться очень близко к

Преимущества с первого взгляда

- 3 функции в одном аппарате.
- Быстрый монтаж.
- Оптимальное гидравлическое
- равновесие системы.
- Непрерывное оптимальное удаление воздуха.
- Непрерывное оптимальное удаление
- Трубка Spiro отвечает за оптимальное распределение
- Оптимальная констукция.
- Малая монтажная высота
- Легкодоступный сливной кран.
- Удаление шлама без остановки
- Гарантия 20 лет латунь, 5 лет сталь.
- срок службы более 40 лет.

Сепаратор SpiroCross был разработан компанией Spirotech при участии компании Computational Fluid Dynamics, и был протестирован ном оборудовании TÜV – Союз раб<mark>отни</mark>ков технического надзора в Герма

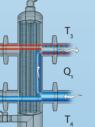

SPIROCROSS°

КАК ЭТО РАБОТАЕТ...

Гидравлическая стрелка с возможностью удаления воздуха и шлама

Гидравлическая стрелка предусматривается в системе для удаления различий основного потока между первичным контуром (Предложение/Qp) и вторичным (Спрос/Qs). В системе со встроенной гидравлической стрелкой становятся возможными 3 различные ситуации. ТЗ при этом является регулирующей величиной.

ОТОПЛЕНИЕ

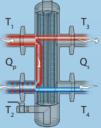


Ситуация 1

Op=Os T1=T3 T2=T4

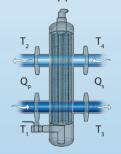
Одинаковый расход в первичном и вторичном контуре. Данный случай можно назвать идеальным, который делает гидравлическую стрелку излишней, но такое случается крайне редко.

Ситуация 2



Qp < Qs T1>T3 T2=T4

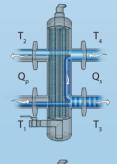
Qp >Qs T1=T3 T2 >T4


Расход во вторичном контуре больше, чем в первичном. Поэтому падает Δt между Т3 и Т4. Часть обратной воды направляется в подачу до тех пор, пока в помещениях не будет достигнута желаемая температура. Мощность котла/чиллера должна таким образом повышаться, пока не достигнет предела.

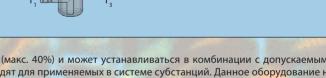
Ситуация 3

Расход в первичном контуре больше, чем во вторичном. Δt между T1 и T2 уменьшается. Часть основной воды отводится прямо в обратную линию. Из-за этого падает продуктивность установки.

ОХЛАЖДЕНИЕ



Сепаратор воздуха


Благодаря уникальной трубке Spiro часть жидкости в системе приволится в состояние покоя. Благоларя этому даже микроскопические пузырьки находящегося в системе воздуха могут всплыть вверх. Собранный воздух выдавливается через автоматический вентиль. Продолжительное удаление воздуха из системы имеет много преимуществ: отсутствие лишних шумов, улучшенный перенос тепла образование количество помех, обусловленный эксплуатационными требованиями. При всем этом увеличивается срок службы системы в целом.

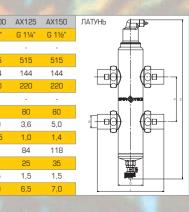
Сепаратор шлама

Благодаря уникальной

Spiro часть жидкости в системе приводится в состояние покоя. Имеюшиеся частицы шлама (≥30 цт) благодаря этому могут упасть вниз. Скапливающий шлам в низу сепаратора периодически требуется сливать. Удаление шлама возможно во время работы системы. Таким образом, система освобождается от частиц шлама, который постоянно образуется в системе. Если система остается без шлама, то увеличивается ее производительность, а число неполадок минимизируется. Разумеется, это так же увеличивает срок службы системы в целом.

84 118 35

Сепаратор Spirocross разработан для воды и водных растворов этиленгликоля (макс. 40%) и может устанавливаться в комбинации с допускаемыми химическими растворами/добавками по местным предписаниям, которые подходят для применяемых в системе субстанций. Данное оборудование не полходит для питьевой воды.


Сепаратор Spirocross подходит для температурной зоны от 0 до 100 °С и рабочего давления от 0 до 10 бар с фланцевым подсоединением PN 16 (цельносварные фланцы в соответствии с DIN 2633).

Различные материалы, зоны давления и температуры возможны при запросе

ЕХНИЧЕСКИЕ ДАННЫЕ									
Артикул изделия	XC050	XC065	XC080	XC100	XC125	XC150	XC200	XC250	XC300
Соединение	DN50	DN65	DN80	DN100	DN125	DN150	DN200	DN250	DN300
Наружный диаметр соединения (мм)	60,3	76,1	88,9	114,3	139,7	168,3	219,1	273	323,9
Высота, Н (мм)	815	905	999	1261	1546	1781	2321	2870	3388
Высота, h (мм)	240	305	360	460	560	670	870	1100	1295
Длина, L (мм)	260	260	370	370	525	525	650	750	850
Длина, LF (мм)	350	350	470	475	635	635	775	890	1005
D (mm)	159	159	219	219	324	324	406	508	610
Расход Р при 1,5 м/с (м³/ч)	12,5	20	27	47	72	108	180	288	405
Расход Р при 1,5 м/с (л/с)	3,5	5,5	7,5	13	20	30	50	80	113
Мощность (△T = 20°C) (кВт)	294	462	630	1092	1680	2520	4200	6720	9450
Мощность (△T = 6°C) (кВт)	88	139	189	328	504	756	1260	2016	2835
Объём (л)	12	13	29	38	105	123	252	501	859
Macca c/dt (vr)	13/26	10/31	33//10	/13/EU	05/110	110/1/0	230/27/	3/1///08	550/6/

T. D.	10000	21	
NO TO THE STATE OF	R12	2 I	
	D L		
	LF .		

() ·	AX1
R1/2	G 1
	-
	51
	14
1 2 ±	220
	-
	80
	2,0
e • •	0,5
1 1 1	46
D .	14
L	1,5
LF .	6,0

с – сварка, ф – фланцы