

XW Pro 8.5 kW Hybrid Inverter for EMEA / APAC

865-8548-55

Correct-XXXIII	•
6	
•	
	Schneider
	Contract of the second s

Protect your home's power supply when the grid goes out. Save on energy costs with utility time of use and demand charge optimization. The XW Pro solar hybrid inverter is the heart of your home power system, connecting solar and battery storage with the grid for backup power and energy security. It can be used for solar and storage, or backup power systems without solar.

Backup power performance

- Reliable operation of backup power and off-grid loads with a high overload power rating (1.75x)
- Seamless transition to backup power with an integrated highspeed transfer switch
- Grid and Generator input ports
- Field proven product quality and reliability, building on two decades of experience in solar and storage

Flexible

- 230 V output, single phase and 3-phase stacking up to 76.5 kW
- Connect solar with Conext[™] MPPT Charge Controllers or PV inverters for DC-coupled or AC-coupled systems
- Lithium Ion battery integration
- Grid tied and off-grid systems

Easy to install

- Configures quickly using Insight
- AC Out port for backup loads
- Full ecosystem and accessories for single unit or scalable systems

Smart energy management

- Optimize energy consumption for time of use rates or demand charges
- Self-consumption of solar energy

Compatible with Insight

- Remote monitoring & control with advanced data security
- Web and mobile app
- Multi-site management for installers

solar.schneider-electric.com

Technical Specifications

Conext™ XW Pro 8.5 kW 230V (IEC)	
Inverter AC output (standalone)	
Output power (continuous) at 25°C	6800 W
Overload 30 min/60 sec at 25°C	8500 W / 12000 W
Output power (continuous) at 40°C	6000 W
Maximum output current 60 seconds (rms)	53 A
Output frequency	50/60 Hz
Output voltage	230 V +/- 3%
AC Output Frequency	50.0 +- 0.1 Hz
Total harmonic distortion at rated power	< 5 %
Idle consumption search mode	< 7 W
Input DC voltage range	40 to 64 V (48 V nominal)
Maximum input DC current	180 A
Charger DC output	
Maximum output charge current	140 A
Output charge voltage range	40 – 64 V (48 V nominal)
Charge control	Three stage, two stage, boost, external BMS, custom
Charge temperature compensation	Battery temperature sensor included
Power factor corrected charging	0.98
Compatible battery types	Flooded (default), Gel, AGM, Lithium ion, custom
AC input	
AC 1 (grid) input current (selectable limit)	3 – 60 A (56 A default)
AC 2 (generator) input current (selectable limit)	3 – 60 A (56 A default)
Automatic transfer relay rating/typical transfer time	60 A/8 ms
AC input voltage range	165 - 280 V
AC input frequency range (bypass/charge mode) AC grid-tie output	45 – 55 Hz (default) 40 – 68 Hz (allowable)
	0 to 27 A
Grid sell current (selectable) Grid sell power	6000W
	000077
Efficiency	95.0%
Peak	95.0%
General specifications Model Name & Part number	
	XW Pro 8548; 865-8548-55 55.2 kg (121.7 lb)/76.7 kg (169.0 lb)
Product/shipping weight Product dimensions (H x W x D)	
· · · · · ·	58 x 41 x 23 cm (23 x 16 x 9 in)
Shipping dimensions (H x W x D)	71.1 x 57.2 x 39.4 cm (28.0 x 22.5 x 15.5 in)
IP degree of protection	IP 20
Operating air temperature range	-25°C to 70°C (-13°F to 158°F) (power derated above 25°C (77°F))
Features	Available (through logisht)
System monitoring and network communications	Available (through Insight)
Intelligent features	Grid sell, peak load shave, generator support, solar self consumption
Auxiliary port	0 to 12 V, maximum 250 mA DC output, selectable triggers
Off-grid AC coupling	Frequency shifting
Regulatory approval (pending)	
Safety	IEC/EN 62109-1/-2
EMC directive	IEC/EN61000-6-1, IEC/EN61000-6-3, IEC/EN61000-3-12
Interconnect	IEC/EN 61727, IEC/EN 62116
Compatible products part numbers	
Power Distribution Panels	XW PDP (865-1014-01)
MPPT Charge Controllers	MPPT 80 600 (865-1032), MPPT 60 150 (865-1030-1)
Monitoring & Configuration	Insight
Accessories	System Control Panel (865-1050), Automatic Generator Start (865-1060), Battery
UCC23001162	Monitor (865-1080-01), Battery Fuse Combiner Box (865-1031-01)

Schneider Gelectric