
HITACHI INVERTER

EASY-SEQUENCE
PROGRAMMING SOFTWARE������

�

INSTRUCTION MANUAL

	
��
	
�

Read through this Instruction Manual, and keep it handy for future reference.

NT2021XA

�
Introduction

Introduction
Thank you for purchasing the Hitachi Inverter.
This Instruction Manual explains how to use the easy-sequence programming software (EzSQ) for the
Hitachi SJ700/L700/SJ700B/WJ200 Series Inverter. Be sure to read this Instruction Manual carefully
before using EzSQ, and keep it on hand for future reference.
Before creating user programs for the inverter, also refer to the Inverter Instruction Manual and
Configuration software (ProDriveNext) Instruction Manual for the necessary related knowledge, and
ensure you understand and follow all safety information, precautions, and operating and handling
instructions for the correct use of the inverter.
Always use the inverter strictly within the range of specifications described in the Inverter Instruction
Manual and correctly implement maintenance and inspections to prevent faults from occurring.
When using the inverter together with optional products, also read the manuals for those products. Note
that this Instruction Manual and the manual for each optional product to be used should be delivered to
the end user of the inverter.

Handling of this Instruction Manual
- The contents of this Instruction Manual are subject to change without prior notice.
- Even if you lose this Instruction Manual, it will not be resupplied, so please keep it carefully.
- No part of this Instruction Manual may be reproduced in any form without the publisher's permission.
- If you find any incorrect description, missing description or have a question concerning the contents of

this Instruction Manual, please contact the publisher.

Revision History

No. Revision content Date of issue Manual code
1 Initial release NT2021X

2
Added L700/SJ700B
Corrected Range of values and Default of ACCEL and DECEL

2011/3 NT2021XA

- The current edition of this Instruction Manual also includes some corrections of simple misprints,
missing letters, misdescriptions and certain added explanations other than those listed in the above
Revision History table.

�

�
Safety Instructions

Safety Instructions
Be sure to read this Instruction Manual, Inverter Instruction Manual, and appended documents thoroughly
before using EzSQ and the inverter.
In these Instruction Manuals, safety instructions are classified into two levels: WARNING and CAUTION.

: Indicates that incorrect handling may cause hazardous situations, which may result in
serious personal injury or death.

� WARNING

: Indicates that incorrect handling may cause hazardous situations, which may result in
moderate or slight personal injury or physical damage alone.

� CAUTION

Note that even a level situation may lead to a serious consequence according to
circumstances. Be sure to follow every safety instruction, which contains important safety information.
Also focus on and observe the items and instructions described under "Notes" in the text.

� CAUTION

WARNING

During trial operation of the inverter with a user program, a user program error may cause the motor
driven by the inverter to run uncontrollably. Be sure to implement safety measures such as the
emergency stop mechanism in your system before trial operation. Otherwise, system failure or personal
injury may result.

��

CAUTION

To debug a user program, first conduct a trial operation of the inverter with an independent motor to
confirm that the motor does not run uncontrollably. After that, install the motor in your system (machine),
and start system operation. Otherwise, system failure or personal injury may result.

��

�

�

�

Safety Instructions�

�

�
Contents

�

Chapter 1 Outline of EzSQ

1.1 Outline··· 1-1
1.2 Corresponding Model ··· 1-1
1.3 Specifications ·· 1-1
1.4 Preparation and System Configuration ·· 1-2
1.5 General Flow of Operation and Setup ·· 1-3
1.6 Notice ·· 1-3

Chapter 2 Syntax

2.1 Description Format ··· 2-1
(1) Program Description Format ··· 2-1
(2) Data Description Format ·· 2-2
(3) Multitasking function ·· 2-2

2.2 List of Instructions ··· 2-3
(1) Program control instructions ·· 2-3
(2) Conditional expressions ·· 2-4
(3) Operational instructions ··· 2-4
(4) Input / output control, timer control, and inverter control instructions ······························· 2-5
(5) Variables ·· 2-6
(6) Numeric values ·· 2-6

2.3 Program Control Instructions ·· 2-7
entry and end statements ··· 2-7
sub and end sub statements ··· 2-7
goto statement ·· 2-8
on trip goto statement ··· 2-8
ifs-then-else-end if statements ·· 2-9
if statement ·· 2-10
for-next loop statements·· 2-11
while loop statement ··· 2-12
until loop statement ··· 2-13
select case syntax statement ·· 2-14
call statement ·· 2-15
inc statement ··· 2-15
dec statement ·· 2-16
Label definition statement ··· 2-16
wait statement ··· 2-17

2.4 Input/Output Control Instructions ·· 2-18
X () or Xw (contact input) ··· 2-18
Y () or Yw (contact output) ··· 2-19
UB () or UBw (internal user contact control) ·· 2-22

2.5 Timer Control Instructions ·· 2-23
timer set (timer-start instruction) ··· 2-24
timer off (timer-stop instruction) ·· 2-25
delay on or delay off (delay operation instruction) ·· 2-25

�

�
Contents

2.6 Inverter Control Instructions ··· 2-27
Inverter operation command ··· 2-27
Inverter operation monitoring instruction ·· 2-28
User Monitor ·· 2-29
User Trip ·· 2-29
stop statement ··· 2-30
chg param statement ·· 2-30
mon param statement ··· 2-31
eepwrt·· 2-32
rtcset on, rtcset off ··· 2-33

2.7 Other Reserved Variables ·· 2-34
U (00) to U (31) ··· 2-34
UL (00) to UL (07) ··· 2-34
SET-Freq ··· 2-35
ACCEL ·· 2-36
DECEL ·· 2-37
XA (0) to XA (2) ··· 2-38
YA (0) to YA (2) ·· 2-39
TD (0) to TD (7), TDw ··· 2-41

2.8 Inverter Montor Variables ··· 2-42
FM ··· 2-42
Iout ·· 2-43
Dir ·· 2-44
PID-FB··· 2-45
F-CNV ··· 2-45
Tmon ··· 2-46
Vout ··· 2-47
Power ·· 2-47
PlsCnt ·· 2-48
POS ··· 2-48
STATUS ··· 2-49
DCV ··· 2-49
RUN-Time ··· 2-50
ON-Time ·· 2-50
ERR CNT ·· 2-51
ERR (1) to ERR (6) ··· 2-51

�

�
Contents

Chapter 3 Interface with the Inverter

3.1 Inverter Settings·· 3-1
(1)SJ700/L700/SJ700B Series ··· 3-1
(2)WJ200 Series ··· 3-2

3.2 Switching of Operation ··· 3-3
(1) Easy sequence function selection (A017) ··· 3-3

3.3 Switching of Input / Output Terminals ··· 3-3
(1) Program run signal input terminal (PRG terminal) ·· 3-3
(2) General-purpose contact input terminals ·· 3-3
(3) General-purpose contact output terminals ·· 3-4
(4) General-purpose analog input terminal (O terminal) ··· 3-5
(5) General-purpose analog input terminal (OI terminal) ·· 3-5
(6) General-purpose analog input terminal (O2 terminal) ··· 3-5
(7) General-purpose analog output terminal

(FM terminal in SJ700/L700/SJ700B / EO terminal in WJ200) ··· 3-6
(8) General-purpose analog output terminal (AM terminal) ·· 3-6
(9) General-purpose analog output terminal (AMI terminal) ··· 3-7

3.4 Switching of Command Input Device ··· 3-8
(1) Frequency source setting (A001 / A201) ··· 3-8
(2) Run command source setting (A002 / A202) ·· 3-8
(3) Accel / decel time input selection (P031) ·· 3-8

3.5 Others ··· 3-9
(1) User-defined variables “U (00)” to “U (31)” (P100 to P131) ·· 3-9
(2) User monitor “Umon (00)” to “Umon (02)” (d025 to d027) ·· 3-9
(3) User trip “trip 0” to “trip 9” (Error code E50 to E59) ··· 3-9

Chapter 4 Errors and Troubleshooting

4.1 Errors Specific to the Easy Sequence Function ··· 4-1
4.2 Troubleshooting ·· 4-2

�

�

�

Contents

�

Chapter 1 Outline of EzSQ

This chapter explains the general procedures for creating and executing a user
program.

1.1 Outline ··· 1-1

1.2 Corresponding Model ·· 1-1

1.3 Specifications ··· 1-1

1.4 Preparation and System Configuration···················· 1-2

1.5 General Flow of Operation and Setup ····················· 1-3

1.6 Notice ··· 1-3

Chapter 1 Outline of EzSQ

1-1

Chapter 1 Outline of EzSQ

1.1 Outline
Easy sequence function (EzSQ) can built a simple sequence function by making the program with programming
software ProDriveNext. In the program, it is possible to change the I/O function and the parameter setting value.

1.2 Corresponding Model
- SJ700 series� � - WJ200 series� � - L700 series� � - SJ700B series

1.3 Specifications
The table below lists the programming-related specifications of the easy sequence function.�

Item Specification

La
ng

ua
ge

s p
ec

ifi
ca

tio
n

Programming language Basic-like language
Input device Windows (DOS/V) personal computer (OS:Windows2000,WindowsXP)

Max. program size 1024steps� (The internal storage capacity of the inverter is 1024 steps or 6144 bytes.)
Programming support
function (programming

software)

- Editing (on Windows) / - Display (on Windows)
- Program syntax check (on Windows)
- Downloading, uploading, and full clearance of program

Execution format Execution by interpreter in an execution cycle of 2 ms per instruction
(possible subroutine call with nesting in up to 8 layers)

In
pu

t/o
ut

pu
t-r

el
at

ed
 fu

nc
tio

ns

External input

Contact signal 24 V open-collector input (using intelligent input terminals)

Program run signal input SJ700/L700/SJ700B : Always assigned to the FW terminal
WJ200 : Assign to the PRG terminal / Always run

Program run signal input SJ700/L700/SJ700B : Up to 8 terminals (X (00) to X (07))
WJ200 : Up to 8 terminals (X (00) to X (07))

General-purpose analog input
XA (0): 0 to 10 V (O terminal)
XA (1): 4 to 20 mA (OI terminal)
XA (2): 0 to 10 V (O2 terminal) (Only SJ700)

External output

General-purpose output terminal
SJ700/L700/SJ700B : Up to 6 terminals (Y (00) to Y (05))
WJ200 : Up to 3 terminals (Y (00) to Y (02))

General-purpose analog output
YA (0): Assignable to the FM terminal
YA (1): Assignable to the AM terminal
YA (2): Assignable to the AMI terminal (Only SJ700)

R
es

er
ve

d
w

or
ds

Instructions

(1) Program control instructions
- Loop (for) / - Unconditional branching (goto) / - Time control (wait)
- Conditional branching (if then, ifs then, select case, until, and while)
- Subroutine (call, sub) / - Others (entry, end, cont, inc, and dec)

(2) Arithmetic instructions
- Arithmetic operation (+, -, *, /) / - Remainder (mod) / - Substitution (=)
- Absolute value (abs) / - Logic operation (or, and, xor, and not)

(3) Input/output control
- General-purpose input/output (bit input, word input, bit output, and word output)
- Reading of inverter input terminal

(4) Timer control : - Delay operation / - Timer control
(5) Parameter control : - Rewriting of parameters by reselecting code on the operator's display

Number of variables

User-defined variable U (00) to U (31) (32 variables)
Internal user variable UL (00) to UL (07) (8 variables)
Set frequency SET-Freq
Acceleration time ACCEL
Deceleration time DECEL

Monitoring variable

FM, Iout, Dir, PID-FB, F-CNV, Tmon, Vout, Power,
RUN-Time, ON-Time, PlsCnt (Only SJ700/L700/SJ700B),
POS, STATUS, DCV, ERR CNT, ERR(1), ERR(2), ERR(3),
ERR(4), ERR(5), and ERR(6)

General-purpose input contact SJ700/L700/SJ700B : X (00) to X (07) (8 contacts)
WJ200 : X (00) to X (07) (8 contacts)

General-purpose output contact

SJ700/L700/SJ700B : Y (00) to Y (05) (6 contacts)
(including a relay contact output)

WJ200 : Y (00) to Y (02) (3 contacts)
(including a relay contact output)

Internal user contact UB (00) to UB (07) (8 contacts)
Internal timer contact TD (0) to TD (7) (8 contacts)
Inverter input/output Specification by code on the remote operator's display
User monitor Umon (00) to Umon (02) (3 variables)
User trip Makes the inverter trip (10 variables)

Chapter 1 Outline of EzSQ

1.4 Preparation and System Configuration
To create user programs with the easy sequence function of the inverter, you must prepare the following devices and
software:
(1) SJ700 or WJ200 or L700 or SJ700B inverter
(2) Personal computer (PC) (Windows system)
(3) Optional programming software ProDriveNext
(4) Optional PC-inverter connection cable

SJ700�
������Inverter port: Operator-connection port�

WJ200
������Inverter port: USBminiB connector�
�

 The following figure shows the basic system configuration for programming.

1-2

�

�

- Install ProDriveNext on your Windows personal computer, and connect the personal computer to the inverter (SJ700
or WJ200 or L700 or SJ700B) via the PC-inverter connection cable.

- After completing these preparations, you can operate ProDriveNext to create a user program and download it to the
inverter.

The table below lists the main functions of ProDriveNext. Please refer to the manual of ProDriveNext for use.

Function Description
Programming support Supports the input, editing, saving, reading, and printing of user programs
Compilation Compiles an edited user program
Downloading and uploading Downloads a user program to the inverter

Uploads a user program to from the inverter
Debugging support Monitors program execution, inverter status, and others

�

Uploading

Optional PC-Inverter
connection cable

SJ700 or WJ200
or L700 or SJ700B

Inverter

Optional programming
software ProDriveNext

Commercially
available Windows
personal computer

Installation

Downloading

Programming

User program

1-3

Chapter 1 Outline of EzSQ

1.5 General Flow of Operation and Setup
A general flow of operations from programming to program execution with the easy sequence function is as follows:
�

No. Description Remarks
1 Create a user program with the ProDriveNext.

- Please refer to the manual of
ProDriveNext for use.

- For details on the syntax, see
Chapter 4.

2 Compile and format that can be run on inverter.
When a user program is compiled, the codes are checked for
validity. If a syntax error is detected, ProDriveNext stops
compilation and displays an error message.

3 Download the compiled user program to the inverter, and save it in
EEPROM. (*1)

4 Configure the parameters required for the easy sequence function
in the inverter.

Please refer to Chapter 3, “Interface
with the Inverter”.

5 Enable the easy sequence function (set "01" or “02” in parameter
"A017").

6 When A017 = 01, turn on the PRG terminal (FW terminal in SJ700/
L700/ SJ700B) to execute the user program.
When A017 = 02 in WJ200, the user program runs automatically
after turning on the power. (*2)

�

*1 If the downloaded user program is saved in internal EEPROM of the inverter, you can execute the user program
even after resetting the inverter power. If the downloaded user program is not saved in EEPROM, the user
program will be deleted when the inverter power is fully shut off. You are recommended not to save a created user
program when downloading it to the inverter for debugging purposes. You should save the user program when
downloading it again after debugging.

�

*2 After having downloaded the user program to the inverter, you can disconnect the inverter from the personal
computer and execute the user program on the inverter alone.�

�

�

1.6 Notice
(1) The format which can be saved by ProDriveNext is only a CSV file.
(2) The specification is different in SJ700, L700, SJ700B and WJ200.
(3) If RS terminal is turned on, a program counter is reset and the user program runs from the program head. However,

the user program is restarted from the program counter before reset at C102=03.��
(4) Do not shut off the power supply of the inverter while writing data in EEPROM by "eepwrt" command.
�

1-4

Chapter 1 Outline of EzSQ

�

�

�

�

�

�

�

�

�

Chapter 2 Syntax
�

�

This chapter explains the syntax and definitions used for programming.
�

�

�

�

�

�

�

2.1 Description Format ·· 2-1

2.2 List of Instructions ·· 2-3

2.3 Program Control Instructions ··································· 2-7

2.4 Input/Output Control Instructions ····························· 2-18

2.5 Timer Control Instructions·· 2-23

2.6 Inverter Control Instructions ···································· 2-27

2.7 Other Reserved Variables ······································· 2-34

2.8 Inverter Montor Variables··· 2-42

Chapter 2 Syntax

�

Chapter 2 Syntax

2.1 Description Format
(1) Program Description Format
Each line of a program consists of the “Label,” “Mnemonic,” “Parm 1 to 6,” and “Comment” fields. The “Mnemonic” field is used to
describe an instruction word. Some instruction words do not require parameters.�
(Example)

 LBL1 delay on � FW TD (1) 1000 Example of comment
� Comment
�

2-1

�

�

[1] Line : A line is the instruction unit of a program. You can describe one instruction word per line. It takes 2 ms to execute
each line. One instruction corresponds to one step of the program.�

Label
Mnemonic instruction code
Parameters

[2] Label : Use the “Label” field to describe, for example, the branch destination for a branch instruction.
[3] Mnemonic : Use the “Mnemonic” field to describe the instruction to be executed. For details on the instructions, see Chapter 5,

“Instruction Words.”
[4] Parameters : Use the “Parameter 1 to 6” fields to describe the arguments required to execute an instruction. Up to six arguments

can be described as required for the instruction word described on the same line.
[5] Comment : Use the “Comment” field to describe a comment on each line.
Note 1 : Please describe the instruction in the line that describes the label. The program might not upload correctly if the

instruction is not described.
Note 2 : The item that can be uploaded are Label, Mnemonic, and Parameters. Comment cannot be uploaded. Moreover,

when the program is uploaded, the label name is changed.
Note 3 : When a program including the line where nothing is described was downloaded and that program is uploaded, the

empty line is deleted. In addition, because program counter monitor (d023) doesn't count the empty line, the
number of Line is not corresponding to the value of the program counter.
Example) When an instruction of the fifth line is executed in a program including the empty line in the second line
and the third line, a value of the program counter is 3.

Chapter 2 Syntax

�

(2) Data Description Format
Each variable is described on a line that consists of the “Variable,” “Define,” “Answer,” and “Comment” fields.
(Example)

�

 U (00) 5000*2+10 10010 initial value
� Comment
� Calculation result
� Definition expression
� Variable name
[1] Variable : Use the “Variable” field to describe a variable name to be defined.
[2] Definition : Use the “Definition” field to describe a definition expression for a variable. A definition expression can be a variable

name. Clicking the [Calculate] button in the “Data Window” after entering a definition expression starts calculation. (If
the calculation executed for a variable by clicking the [Calculate] button results in a value that is outside the range of
numeric values defined for the variable, the “Data range is invalid!!” message will appear and the “Result” field will
indicate “<Range is invalid.>.”)

[3] Result : The “Result” field displays a calculation result. You cannot rewrite the calculation result.
[4] Comment : You can describe a comment about the variable described on the line.
Note : The item that can be uploaded is only Result. Definition and Comment cannot be uploaded.

(3) Multitasking function
In WJ200 series, two or more programs (a maximum of 5 tasks) can be simultaneously performed by the multitasking function. One
line of each task is executed at 2ms cycle. Please refer to the manual of ProDriveNext for the method of making two or more tasks.
�

The limitations in multitasking are shown below.

Limitations Description

Subroutine CALL Subroutine CALL between tasks is not made.

Movement to the label It cannot move between tasks to the label by the goto instruction and the if
instruction, etc.

Variables The variables such as user-defined variable U (00) become common by each task.

Timer When plural tasks carry out timer set / timer off for the same timer number, it will not
work normally.

Display of d023 Inverter function cord d023 displays program counter of task 1.

2-2

Chapter 2 Syntax

2-3

2.2 List of Instructions
This section lists the instructions that can be used in a program.

(1) Program control instructions
Instruction

name
Instruction format Description Mnemonic code Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

entry
statement

entry Indicates the beginning of the main
program.

end Indicates the end of the main program.

sub
statement

sub <subroutine
name> Indicates the beginning of a subroutine.

end sub Indicates the end of a subroutine.

call
statement

call
<subroutine
name>

Branches processing to the subroutine
specified by <subroutine name>.�

for loop
statement

for <variable> <start value> <end value> <incremental
value> �

Executes <instruction set> repeatedly until
<variable> reaches <end value>. Note that
<variable>, which initially contains <start
value>, is incremented by <incremental
value> each time <instruction set> is
executed.�

<instruction set> � � �
Indicates the instructions to be executed
repeatedly.�

next � � � Ends the “for” loop.�

goto
statement

goto <label name> � � �
Branches processing unconditionally to the
step labeled with <label name>.�

on trip goto
statement

on trip goto <label name> � �
Branches processing to the step labeled
with <label name> when the inverter trips.�

if statement
if <condition> ����� <label name>

Branches processing to the step labeled
with <label name> when the <condition> is
met.�

structured if

ifs <condition> � � Starts the structured if statement.�

then � � �
Indicates the beginning of instructions to be
executed when <condition> is met.�

<instruction set> � � �
Indicates the instructions to be executed
when <condition> is met.�

else � � �
Indicates the beginning of instructions to be
executed when <condition> is not met.�

<instruction set> � � �
Indicates the instructions to be executed
when <condition> is not met.�

end if � � � Ends the structured if statement.�

select case
syntax

statement

select
<conditional
variable> � � �

Executes the instructions specified after
“case” when the value of <conditional
variable> is <conditional value>.�

case <conditional
value> � � �

Indicates the conditional value and the
beginning of instructions to be executed.�

[case else] Indicates the beginning of instructions to be
executed when the value of <conditional
variable> is not <conditional value>.�

end select Ends the select case syntax statement.�

until loop
statement

until <condition> � �
Executes <instruction set> repeatedly until
<condition> is met.�

<instruction set> � � �
Indicates the instructions to be executed
while <condition> is not met.�

loop � � � Ends the “until” loop.�

wait loop
statement

wait ***.** Waits for “***.**” seconds.�

<variable> Waits for <variable> × 10ms.
<condition> � � Waits until <condition> is met.�

while loop
statement

while <condition> � �
Executes <instruction set> while
<condition> is met.�

<instruction set> � � �
Indicates the instructions to be executed
while <condition> is met.�

wend Ends the “while” loop.�

inc
statement

inc <variable> � � � Increments the value of <variable> by 1.�

dec
statement

dec <variable> � � � Decrements the value of <variable> by 1.�

Chapter 2 Syntax

2-4

(2) Conditional expressions
The table below lists the conditional expressions that can be used for the <condition> parameters in program control instructions.

Instruction
name

Instruction format Description�Mnemonic code Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

Comparison�

� <variable 2 /
constant>� = <variable 3/

constant>�
� � “True” when <variable 2/constant> is equal

to <variable 3/constant>

� <variable 2 /
constant>� < <variable 3/

constant>�
� � “True” when <variable 2/constant> is less

than <variable 3/constant>

� <variable 2 /
constant>� <= <variable 3/

constant>�
� � “True” when <variable 2/constant> is not

greater than <variable 3/constant>

� <variable 2 /
constant>� > <variable 3/

constant>�
� � “True” when <variable 2/constant> is

greater than <variable 3/constant>

� <variable 2 /
constant>� >= <variable 3/

constant>�
� � “True” when <variable 2/constant> is not

less than <variable 3/constant>

� <variable 2 /
constant>� <> <variable 3/

constant>�
� � “True” when <variable 2/constant> is not

equal to <variable 3/constant>

����Note : <variable 1> and <variable 2> can be constants ranging from 0 to 127.
�

(3) Operational instructions
Instruction

name
Instruction format Description�Mnemonic code Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

Arithmetic
operation�

<variable 1> =� <variable 2/
constant>� ��

<variable 3/
constant>�

� � Adds <variable 2/constant> and <variable
3/constant> and assigns the result to
<variable 1>.

<variable 1> =� <variable 2/
constant>� ��

<variable 3/
constant>�

� � Subtracts <variable 3/constant> from
<variable 2/constant> and assigns the
result to <variable 1>.

<variable 1> =� <variable 2/
constant>� ��

<variable 3/
constant>�

� � Multiplies <variable 2/constant> by
<variable 3/constant> and assigns the
result to <variable 1>.

<variable 1> =� <variable 2/
constant>� ��

<variable 3/
constant>�

� � Divides <variable 2/constant> by <variable
3/constant> and assigns the result to
<variable 1>.

Remainder <variable 1> =� <variable 2/
constant>� mod <variable 3/

constant>�

� � Divides <variable 2/constant> by <variable
3/constant> and assigns the remainder to
<variable 1>.

Absolute
value <variable 1> =� � abs <variable 3/

constant>�
� � Assigns the absolute value of <variable

3/constant> to <variable 1>.

Substitution <variable 1> =� �
<variable 3/
constant>�

� � Assigns <variable 3/constant> to <variable
1>.

Logic
operation�

<variable 1> =� <variable 2/
constant>� or <variable 3/

constant>�
� � Assigns the OR of <variable 2/constant>

and <variable 3/constant> to <variable 1>.

<variable 1> =� <variable 2/
constant>� and <variable 3/

constant>�
� � Assigns the AND of <variable 2/constant>

and <variable 3/constant> to <variable 1>.

<variable 1> =� <variable 2/
constant>� xor <variable 3/

constant>�
� � Assigns the XOR of <variable 2/constant>

and <variable 3/constant> to <variable 1>.

<variable 1> =� � not <variable 3/
constant>�

� � Inverts the bits of <variable 3/constant> and
assigns the inverted bits to <variable 1>.

����Note 1 : <variable 2> can be a constant ranging from 0 to 127.
Note 2 : <variable 3> can be a constant ranging from 0 to 231-1.

Chapter 2 Syntax

2-5

(4) Input / output control, timer control, and inverter control instructions
Instruction

name
Instruction format Description�Mnemonic code Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5

General-
purpose

contact input

<variable> = X (ii)
Fetches general-purpose contact
information and stores it in <variable>. (0 =
off, 1 = on)

<variable> = Xw
Fetches general-purpose contact
information and stores it as word data in
<variable>.

General-
purpose
contact
output

Y (ii) = <variable /
constant)

Outputs bit data to a general-purpose
contact. (0 = off, 1 = on)

Yw = <variable /
constant)

Outputs word data to a general-purpose
contact.

Inverter
operation
command

<input terminal>
=

<variable /
constant)

Operates an inverter input terminal. (0 = off,
1 = on)

Inverter
operation

monitoring

<variable> = <output
terminal>

Fetches information from an inverter output
terminal.

<variable> = <input
terminal> =

Fetches information from an inverter input
terminal.

Delay
operation

delay on <variable 1> TD (k) <variable 2/
constant>

Turns on the terminal specified by <variable
1> after the time specified by
<variable2/constant> elapses.

delay off <variable 1> TD (k) <variable 2/
constant>

Turns off the terminal specified by <variable
1> after the time specified by
<variable2/constant> elapses.

Timer control timer set TD (k) <variable /
constant)

Sets <variable/constant> in a specified
timer and starts the timer.

timer off TD (k) Stops the specified timer.

Internal user
contact
control

<variable> = UB (ii) Fetches internal user contact information
and stores it in <variable>. (0 = off, 1 = on)

<variable> = UBw Fetches internal user contact information
and stores it as word data in <variable>.

UB (ii) = <variable /
constant)

Outputs bit data to an internal user contact.
(0 = off, 1 = on)

UBw = <variable /
constant)

Outputs word data to an internal user
contact.

Parameter
change chg param <display

code>
<variable /
constant)

Replaces the content of <display code>
with <variable/constant>.

Parameter
reading mon param <display

code> <variable> Reads the content of <display code> into
<variable>.

Parameter
writing eepwrt

Stores a data of only one parameter
changed by chg param command that is
issued immediately after the execution of
eeprwrt command to EEPROM. (SJ700/
L700/ SJ700B series doesn't correspond.)

Clock
command

rtcset on <variable>

The clock data is substituted for six bytes
that make <variable> a head. Moreover,
the clock data is regularly updated. (Only
WJ200 Step2 corresponds.)

rtcset off <variable>

The clock data is substituted for six bytes
that make <variable> a head. Moreover,
the update of the clock data is stopped.
(Only WJ200 Step2 corresponds.)

Stop
inverter stop The inverter decelerate and stop the motor

User
monitor

Umon(ii) = <variable> Displays <variable> on user monitor (ii)

Umon(ii) = <variable1> <operators> <variable2>
Displays the result of operation with
<variable1> and <variable2> on user
monitor (ii)

<variable>= Umon(ii)
Value of user monitor (ii) is read out to
<variable>

User trip trip <variable> Makes the inverter trip

Chapter 2 Syntax

2-6

(5) Variables
Type of variable Variable name Range of numeric values

Bit and contact variables FW, X (00), etc. 0, 1 (0: OFF, 1: ON)
User-defined variable U (00) to U (31) 0 to 65535
Internal user variable UL (00) to UL (07) -2147483648 to 2147483647
Frequency setting variable SET-Freq 0 to 40000
Acceleration / deceleration time
setting variable

ACCEL, DECEL 0 to 360000

Monitoring and other variables See Section 2.8, “Inverter Monitor Variables.”

(6) Numeric values�

Notation Numeration Remarks
(Omitted) Decimal Decimal number

&H Hexadecimal Hexadecimal number (specifiable only in the “Data Window”)
&B Binary Binary number (specifiable only in the “Data Window”)

Chapter 2 Syntax

2-7

2.3 Program Control Instructions
This section explains the details of program control instructions.

entry and end statements Instructions to start and end the main program

- Format
Format Description

entry
This instruction indicates the beginning of the main program.
(This instruction must be described at the top of the main program.)

end This instruction indicates the end of the main program.

- Explanation
The entry and end statements indicate the beginning and end of the main program, respectively. Each program always
requires these instructions.

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � : The main program begins.
� � �� � � � � �

� FW= 1 � � � : Start forward rotation of the motor.
� wait 10.00 � � � � : Wait 10 seconds.
� stop � � � � � : Stop inverter output.
� wait 10.00 � � � � : Wait 10 seconds.
� � �� � � � � �

� end � � � � � : The main program ends.

sub and end sub statements Instructions to start and end a subroutine

- Format
Format Description

sub <subroutine name> This instruction indicates the beginning of a subroutine.

end sub
This instruction indicates the end of a subroutine.
Control is returned to the calling routine.

- Explanation
The sub and end sub statements indicate the beginning and end of a subroutine, respectively.
<subroutine name> : Specifies the name of a called subroutine. This subroutine name is the first argument (branch
destination) of the call instruction in the calling routine.

Note : Subroutines can be nested in up to eight layers. A subroutine programmed with a structured instruction (i.e.,
sub, for, while, until, select, or ifs) is counted as one nesting layer. Therefore, when a for-next loop statement
is described in a subroutine, there are two nesting layers.

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� sub sub1 � � � � : Subroutine "sub1" begins.
� � �� � � � � �

� FW= 1 � � � : Start forward rotation of the motor.
� wait 10.00 � � � � : Wait 10 seconds.
� stop � � � � � : Stop inverter output.
� wait 10.00 � � � � : Wait 10 seconds.
� � �� � � � � �

� end sub � � � � � : Subroutine "sub1" ends.
� �

Chapter 2 Syntax

�

goto statement Instruction to branch processing unconditionally

- Format
Format Description

goto <label name> This instruction branches processing unconditionally to the step labeled
with <label name>.

- Explanation
Use this instruction to branch processing unconditionally to the step labeled with <label name>.
<label name> : Specifies the label name of the branch-target step (line).

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� goto LABEL1 � � � � : Unconditionally branch to step "LABEL1".
� � �� � � � � �

LABEL1 FW= 1 � � � � : Branch target

on trip goto statement Instruction to branch processing upon the occurrence of an event�

- Format
Format Description

on trip goto <label name> This instruction branches processing to the step labeled with <label
name> when the inverter trips.

- Explanation
Use this instruction to branch processing to the step labeled with <label name> when the inverter trips.
In the SJ700 Series, when inverter trips without the description of this instruction, the program stops immediately after the
occurrence of inverter trip.
In the WJ200 Series, when the user trip occurs without the description of this instruction, the program stops immediately after
the occurrence of inverter trip.

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� on trip goto LABEL1 � �
: Branch to step "LABEL1" when the

inverter trips.
� � �� � � � � �

LABEL1 Y(00)= 1 � � � � : Branch target

2-8

Chapter 2 Syntax

2-9

ifs-then-else-end if statements Structured if instruction�

- Format
Format Description

ifs <condition>
[then]
<instruction set 1>
[else]
<instruction set 2>
end if

When <condition> is met, this instruction executes <instruction set 1>
described between “then” and “else.”
When <condition> is not met, this instruction executes <instruction set
2> described between “else” and “end if.”

- Explanation
This instruction executes different sets of instructions according to whether <condition> is met.
When <condition> is met, this instruction executes <instruction set 1>. When <condition> is not met, this instruction
executes <instruction set 2>.
If neither “then <instruction set 1>“ nor “else <instruction set 2>“ is described, the ifs statement jumps to the end if
statement.

<condition> : Specifies a conditional expression among those listed in Section 2.2, “ List of Instructions (2)
Conditional expressions.”

<instruction set 1> : Specifies the instructions to be executed when <condition> is met. The instructions may be described
on two or more lines. The instructions are executed in units of lines in a cycle as explained below.

<instruction set 2> : Specifies the instructions to be executed when <condition> is met. The instructions may be described
on two or more lines. The instructions are executed in units of lines in a cycle as explained below.

- Processing cycle
Note that <condition> is checked in the first cycle, and the first instruction in <instruction set 1> or <instruction set 2> is
executed in the second cycle. In the third cycle, the second instruction <instruction set 1> or <instruction set 2> is executed
or, if no other instruction remains in the instruction set, processing jumps to the end if statement. Therefore, the routine from “ifs”
to “end if” is executed in three cycles when the instruction set contains only one instruction.
Refer to the statement execution sequence indicated by parenthesized numbers in the comment fields of the sample programs
below.

- Sample program
When <condition>

is met
When <condition>

is not met Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
� ifs X(00) = 1 � � � (1) (1)
� then � � � � �

� Y(00)= 1 � � � � � (2)
� Y(01)= 0 � � � � � (3)
� else � � � � �

� Y(00)= 0 � � � � � (2)
� Y(01)= 1 � � � � � (3)
� end if � � � � � � (4) (4)
� �

Chapter 2 Syntax

if statement Instruction to branch processing unconditionally�

- Format
Format Description

if <condition> then <label name>
When <condition> is met, processing branches to the step labeled with
<label name>.
When <condition> is not met, processing proceeds to the next step (line).

- Explanation
Use this instruction to branch processing conditionally.
When <condition> is met, processing branches to the step labeled with <label name> described after “then.”

<condition> : Specifies a conditional expression among those listed in Section 2.2, “ List of Instructions (2) Conditional
expressions.”

<label name> : Specifies the label name of the branch-target step (line).

- Processing cycle
Note that <condition> check and branch processing are executed in the same cycle.
Refer to the statement execution sequence indicated by parenthesized numbers in the comment fields of the sample programs
below.

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� Yw= 0 � � � � : Turn off terminals Y (00) to Y (05).

�
if X(00) = 1 then LABEL1 : (1) When <condition> is met, branch to

step "LABEL1."

�
if X(01) = 1 then LABEL2 : (2) When <condition> is met, branch to

step "LABEL2."
� Y(00)= 1 � � � � : (3)
� goto LABEL3 � � � � : (4) (2)
LABEL1 Y(01)= 1 � � � � : (3)
� goto LABEL3 � � � � :
LABEL2 Y(02)= 1 � � � � : (3)
LABEL3 Y(03)= 1 � � � � : (5) (4) (4)

�

2-10

Chapter 2 Syntax

for-next loop statements for loop instruction�

- Format
Format Description

for <variable> <start value> <end value>
<incremental value>
<instruction set>
next

This loop instruction executes <instruction set> repeatedly until
<variable> exceeds <end value>.
Note that <variable>, which initially contains <start value>, is
incremented by <incremental value> each time <instruction
set> is executed.

- Explanation
Use the for loop statement to effectively describe a process for which the number of execution times is predetermined.
As a loop process, <instruction set> is executed and <variable> incremented by <incremental value> from <start value>.
If <variable> exceeds <end value>, processing exits the loop. Otherwise, the loop process is repeated. Therefore,
<instruction set> is always executed at least once.
The following chart shows the flow of processing.

Assign <start value> in <variable>

Execute <instruction set>

Assign “<start value> +
<incremental value>” to <variable>�

Did
<variable> exceed

<end value>?
No

Yes

<variable> : Specifies the name of the variable to be used for the loop.
<start value> : Specifies the initial value of <variable> to be applied at the beginning of the loop. You can specify a

variable name or immediate value (i.e., a value that can be entered directly). The immediate value must
be an integer ranging from 0 to 127. To use a larger numerical value, preset the value in a variable and
specify the variable as <start value>.

<end value> : Specifies the limit value at which to exit the loop. Processing exits the loop when <variable> exceeds
<end value>. You can specify a variable name or immediate value (i.e., a value that can be entered
directly). The immediate value must be an integer ranging from 0 to 127. To use a larger numerical
value, preset the value in a variable and specify the variable as <end value>.

<incremental value> : Specifies the value to be added to <variable> each time the loop is executed. You can specify a
variable name or immediate value (i.e., a value that can be entered directly). The immediate value must
be an integer ranging from 0 to 127. To use a larger numerical value, preset the value in a variable and
specify the variable as <incremental value>.

<instruction set> : Describes the set of instructions to be executed in one loop process. The instructions may be
described on two or more lines. The instructions are executed in units of lines in a cycle as explained
below.

2-11

Chapter 2 Syntax

- Processing cycle
Refer to the statement execution sequence indicated by parenthesized numbers in the comment fields of the sample programs
below.
(1) : The “for” line is executed only once.
(2) and (3) : <instruction set> is executed.
(4) : <variable> is incremented in the cycle that follows the cycle in which the last instruction of <instruction set> is

executed. Then, <variable> is checked to determine whether to exit the loop (in other words, the next statement
is executed). When repeating the loop, processing returns to the first instruction of <instruction set> in this cycle.

(5) : This step is executed in the next cycle.
(6) to (10) : These steps are repeated in the same way as the preceding loop execution.
(11) : Processing proceeds to the following step (line).

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 Sequence of execution
� for U(00) 0 3 1 � �(1)� � �

� Y(00)= 1 � � � � �(2) (5) (8)
� Y(00)= 0 � � � � �(3) (6) (9)
� next � � � � � �(4) (7) (10)
� Y(00)= 1 � � � � � (11)

�

while loop statement Instruction to conditionally execute a pre-conditioned loop�

- Format
Format Description

while <condition>
<instruction set>
wend

This instruction executes <instruction set> while <condition> is met.
Note that <condition> is checked before the execution of <instruction
set>.

- Explanation
This instruction executes <instruction set> repeatedly as long as <condition> is met. Note that <condition> is checked
before the execution of <instruction set>. If <condition> is not met, processing proceeds to the wend statement without
executing <instruction set>.

�

Is <condition> met?

Execute <instruction set>

No

Yes

�

�

�

�

�

�

�

�

�

�

�

�

- Sample program (Condition “X (00) = 0” is met after the loop is executed twice.)
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 Sequence of execution
� while X(00) = 1 � � �(1)� � � (5) (9)
� Y(00)= 1 � � � � �(2) (6)
� Y(00)= 0 � � � � �(3) (7)
� wend � � � � � �(4) (8)
� Y(00)= 1 � � � � � (10)
� �

�

2-12

Chapter 2 Syntax

�

until loop statement Instruction to conditionally execute a post-conditioned loop�

�

- Format
Format Description

until <condition>
<instruction set>
loop

This instruction executes <instruction set> until <condition> is met.
Note that <condition> is checked after the execution of <instruction
set>.

- Explanation
This instruction executes <instruction set> repeatedly until <condition> is met. Note that <condition> is checked after the
execution of <instruction set>.

Execute <instruction set>

Is <condition> met? Yes

No

- Sample program (Condition “X (00) = 0” is met after the loop is executed twice.)
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 Sequence of execution
� until X(00) = 1 � � �(1)� � � (5) (9)
� Y(00)= 1 � � � � �(2) (6) (10)
� Y(00)= 0 � � � � �(3) (7) (11)
� loop � � � � � �(4) (8) (12)
� Y(00)= 1 � � � � � (13)

2-13

Chapter 2 Syntax

2-14

select case syntax statement Instruction to branch under multiple conditions

- Format
Format Description

select <conditional variable>
case <conditional value 1>
<instruction set 1>
case <conditional value 2>
<instruction set 2>
���

[case else]
[<instruction set n>]
end select

This instruction executes <instruction set 1> to <instruction set n-1>
described in a case statement when <conditional variable> matches
<conditional value 1> to <conditional value n-1> in the case statement,
respectively.
If the case else statement is described, <instruction set n> is executed
when <conditional variable> does not match any of <conditional value
1> to <conditional value n-1>.

- Explanation
This instruction executes <instruction set 1> to <instruction set n-1> described in a case statement when <conditional
variable> matches <conditional value 1> to <conditional value n-1> in the case statement, respectively. If the case else
statement is described, <instruction set n> is executed when <conditional variable> does not match any of <conditional
value 1> to <conditional value n-1>.

- Sample program (when Xw = 2)
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 Sequence of execution
� U(00)= Xw � � � � �� � � � (1)
� select U(00) � � � � �� � � � (2)
� case 0 � � � � �

� Yw= U(00) � � � � ��

� case 1 � � � � ��

� Yw= U(00) � � � � ��

� case 2 � � � � �� � � � (3)
� Yw= U(00) � � � � �� � � � (4)
� case 4 � � � � ��

� Yw= U(00) � � � � ��

� case else � � � � � ��

� Yw= 0 � � � � �

� end select � � � � � �� � � � (5)
� Y(00)= 1 � � � � �� � � � (6)

Chapter 2 Syntax

2-15

�

call statement Instruction to unconditionally branch to a subroutine�

- Format
Format Description

call <subroutine name> This instruction branches processing unconditionally to the subroutine
specified by <subroutine name>.

- Explanation
This instruction branches processing unconditionally to the subroutine specified by <subroutine name>.
After the subroutine is executed, processing proceeds to the instruction that follows the calling step.

�������

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

� � � � � � � � �

� call SUB1 � � � � : Call subroutine "SUB1".
� � � � � � � � �

� end � � � � � �

� � � � � � � �

� sub SUB1 � � � � : Called subroutine
� � � � � � � � �

� Y(00)= 1 � � � �

� � � � � � � � �

� sub end � � � � � �

� �

inc statement Instruction to increment a variable�

- Format
Format Description

inc <variable> This instruction increments <variable> by 1.

- Explanation
This instruction adds 1 to the value of <variable>.

�

- Sample program
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

LOOP inc U(00) � � � � : Assign "U (00) + 1" to U (00).
� U(00)= U(00) and U(01) � � : Mask the 6 low-order bits of U (00).

�
Yw= U(00)

� � �
: Output the content of U (00) to terminals
Y (00) to Y (05).

� wait 0.5 � � � � : Wait 0.5 second.
� goto LOOP � � � � �

� end � � � � � �

�

(Data area [Data Window])
U (00) = 255
U (01) = 63

Chapter 2 Syntax

2-16

dec statement Instruction to decrement a variable�

- Format
Format Description

dec <variable> This instruction decrements <variable> by 1.

- Explanation
This instruction subtracts 1 from the value of <variable>.

- Sample program
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

LOOP dec U(00) � � � � : Assign "U (00) - 1" to U (00).
� U(00)= U(00) and U(01) � � : Mask the 6 low-order bits of U (00).

�
Yw= U(00)

� � �
: Output the content of U (00) to terminals
Y (00) to Y (05).

� wait 0.5 � � � � : Wait 0.5 seconds.
� goto LOOP � � � � �

� end � � � � � �

� �

(Data area [Data Window])
U (00) = 255
U (01) = 63

Label definition statement Statement to define a label�

- Format
Format Description

<label name> This statement defines <label name>.

- Explanation
Use this statement to define <label name> to be used in the goto or other instructions. The statement is not executed when
described alone.

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� goto LABEL1 � � � � : Branch to step "LABEL1".
� � � � � � � �

LABEL1 Y(00)= 1 � � � � : Branch-target step (line)

Chapter 2 Syntax

2-17

wait statement Instruction to make processing wait�

- Format
Format Description

1 wait iii.ii This instruction makes processing wait for “iii.ii” seconds.
2 wait <variable> This instruction makes processing wait for “<variable> ×10 “ ms.
3 wait <condition> This instruction makes processing wait until <condition> is met.

- Explanation
Format 1 : This instruction makes processing wait for “iii.ii” seconds. After “iii.ii” seconds elapse, the next instruction is

executed.
Format 2 : This instruction makes processing wait for “<variable> ×10 “ ms. After “<variable> ×10 “ ms elapse, the next

instruction is executed.
Format 3 : This instruction makes processing wait until <condition> is met. After <condition> is met, the next instruction is

executed.

- Sample program
Sample 1 : Format 1

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� wait 1.00 � � � � : Wait 1 second.
� Y(00)= 1 � � � �

� � � � � � � � �

Sample 2 : Format 2
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� U(00)= � � 100 � � �

� � � � � � � � �

� wait U(00) � � � � : Wait 100×10ms.
� Y(00)= 1 � � � �

� � � � � � � � �

Sample 3 : Format 3
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� wait X(00) = 1 � � : Wait until condition "X (00) = 1" is met.
LABEL1 Y(00)= 1 � � � � �

� � � � � � � � �

Chapter 2 Syntax

2-18

2.4 Input/Output Control Instructions
This section describes the details of input/output control instructions.

X () or Xw (contact input) Instruction to access contact inputs�

- Format
Format Description

1 <variable> = X (ii)
 (SJ700 : ii = 00 to 07)
 (WJ200 : ii = 00 to 09)

This instruction assigns the ii'th bit of contact input data to <variable>.

2 <variable>= Xw This instruction assigns contact input data as word data to <variable>.

- Explanation
This instruction fetches the status of contact input terminals X (ii) and stores it in <variable> in units of bits or words. You cannot
write data to <variable>, which is read-only. Details of the formats are explained below.
Format 1 : With this format, the instruction assigns the status of the ii'th bit of contact input data to <variable>. (0 = off, 1 = on)

(Examples)
When terminal X (00) is off: UB= X (00) (UB (00) = 0)
When terminal X (00) is on: UB= X (01) (UB (00) = 1)

Format 2 : With this format, the instruction assigns the status of contact input data as word data to <variable>. (0 = off, 1 = on)
(Examples)
When terminals X (00) to X (03) are on and terminals X (04) to X (07) are off: Uw= Xw (Uw = 15)
When terminals X (00) to X (02) are off and terminals X (03) to X (07) are on: Uw= Xw (Uw = 248)

Note 1 : In the SJ700/L700/SJ700B Series, the setting of terminal active state (C011 to C018) is reflected in the
polarity (on or off) of contact inputs X (00) to X (07) and Xw. When you create a user program, consider the
on and off states of actual intelligent input terminals 1 to 8.
In the WJ200 Series, the setting of terminal active state (C011 to C017) is reflected in the polarity (on or off)
of contact inputs X (00) to X (06) and Xw. When you create a user program, consider the on and off states of
actual intelligent input terminals 1 to 7.

Note 2 : Since this instruction reads the internal input terminal data at least twice (in two execution cycles), storing
the read data in <variable> is delayed by at least two execution cycles.

Note 3 : Wiring noise or switch chattering may cause incorrect read data to be set in <variable>. To avoid such
problems, design your program so that it will verify the read data.

�

- Sample program
Sample 1 : Program to invert the status data of input terminal X (01) and output it to output terminal Y (05)

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

LOOP UB(00)= � � X(01) � �
: Fetch the status of X (01) and store it as
internal user contact data.

� ifs UB(00) = 0 � �
: Branch according to the conditional
expression.

� then � � � � �

� Y(05)= 1 � � � � : Turn Y (05) on when the condition is met.
� else � � � � �

� Y(05)= 0 � � � �
: Turn Y (05) off when the condition is not
met.

� end if � � � � � �

� goto LOOP � � � � �

� end � � � � � �

�

Chapter 2 Syntax

2-19

�

Sample 2 : Program to acquire input terminal status as word data and output only the status of terminals X (02) to X (05) as
word data to output terminals Y (00) to Y (03)

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

LOOP U(00)= Xw � � �
: Fetch input terminal status and store it in
the user variable.

� U(00)= U(00) / 4 � � : Cut off the data of X (00) to X (01).
� U(00)= U(00) and 15 � � : Mask the data of X (06) to X (07).

� Yw= U(00) � � �
: Output the data of X (02) to X (05) as
word data.

� goto LOOP � � � �

� end � � � � � �

�

�

Y () or Yw (contact output) Instruction to access contact outputs�

- Format
Format Description

1 Y (ii)= <variable> or <constant>
 (ii = 00 to 05)

This instruction assigns <variable> or <constant> to the ii'th bit of
contact output data.

2 Yw= <variable> or <constant> This instruction assigns <variable> or <constant> as word data to
contact outputs.

- Explanation
This instruction writes <variable> or <contact> to contact output terminals Y (00) to X (05) in units of bits or words to output the
data. You can write and read data to and from <variable> or <contact>. You can also fetch and store the status data of contact
output terminals Y (00) to Y (05) in <variable>. Details of the formats are explained below.
Format 1 : With this format, the instruction outputs <variable> to the ii'th bit of contact output terminal.

(0 = off, 1 = on, 2 or more = off)
(Examples)
To turn terminal Y (00) off: Y (00)= 0
To turn terminal Y (01) on: Y (01)= 1

Format 2 : With this format, the instruction outputs <variable> as word data to contact output terminals.
(Examples)
To turn terminal Y (00) on and turn terminals Y (01) to Y (05) off: Yw= 1
To turn terminals Y (00) to Y (04) off and turn terminal Y (05) on: Yw= U (00) (U (00) = 32)

Note : In the SJ700/L700/SJ700B Series, the setting of terminal active state (C031 to C036) is reflected in the
polarity (on or off) of contact inputs Y (00) to Y (05) and Yw when the data is output to intelligent output
terminals 11 to 15 and the relay output terminal. When you create a user program, consider the on and off
states of actual intelligent output terminals.
In the WJ200 Series, the setting of terminal active state (C031, C032, and C036) is reflected in the polarity (on
or off) of contact inputs Y (00), Y (01), Y (05) and Yw when the data is output to intelligent output terminals 11,
12 and the relay output terminal. When you create a user program, consider the on and off states of actual
intelligent output terminals.

Chapter 2 Syntax

2-20

�

- Sample program
Sample 1 : Program to turn terminals Y (00) to Y (05) on sequentially while the output frequency is increased in 10-Hz steps.

(The inverter operation is the same as that programmed in sample 2.)
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

� SET-Freq= � � 6000 � � : Set the output frequency to 60 Hz.
� ACCEL= � � 3000 � � : Set the acceleration time to 30 seconds.
� DECEL= � � 3000 � � : Set the deceleration time to 30 seconds.
� Yw= 0 � � � �

� FW= 1 � � � � : Start forward rotation of the motor.
LOOP if FM < U(00) then LBL1 : When the output frequency is less than 10 Hz,
� Y(00)= 1 � � � : turn Y (00) on.
� if FM < U(01) then LBL1 : When the output frequency is less than 20 Hz,
� Y(01)= 1 � � � : turn Y (01) on.
� if FM < U(02) then LBL1 : When the output frequency is less than 30 Hz,
� Y(02)= 1 � � � : turn Y (02) on.
� if FM < U(03) then LBL1 : When the output frequency is less than 40 Hz,
� Y(03)= 1 � � � : turn Y (03) on.
� if FM < U(04) then LBL1 : When the output frequency is less than 50 Hz,
� Y(04)= 1 � � � : turn Y (04) on.
� if FM < U(05) then LBL2 : When the output frequency is less than 60 Hz,
� Y(05)= 1 � � � : turn Y (05) on.
LBL1 goto LOOP � � � �

LBL2 FW= 0 � � �

� Wait RUN = 0 � � : Decelerate and stop the motor.
� end � � � � � �

�

(Data area [Data Window])
U (00) = 1000
U (01) = 2000
U (02) = 3000
U (03) = 4000
U (04) = 5000
U (05) = 6000

Chapter 2 Syntax

2-21

�

Sample 2 : Program to output codes sequentially to terminal Yw while the output frequency is increased in 10-Hz steps.
(The inverter operation is the same as that programmed in sample 1.)

(Code area [Code Window])
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

� SET-Freq= � � 6000 � � : Set the output frequency to 60 Hz.
� ACCEL= � � 3000 � � : Set the acceleration time to 30 seconds.
� DECEL= � � 3000 � � : Set the deceleration time to 30 seconds.
� Yw= 0 � � � �

� FW= 1 � � � � : Start forward rotation of the motor.
LOOP if FM < U(00) then LBL1 : When the output frequency is less than 10 Hz
� if FM < U(01) then LBL2 : When the output frequency is less than 20 Hz
� if FM < U(02) then LBL3 : When the output frequency is less than 30 Hz
� if FM < U(03) then LBL4 : When the output frequency is less than 40 Hz
� if FM < U(04) then LBL5 : When the output frequency is less than 50 Hz
� if FM < U(05) then LBL6 : When the output frequency is less than 60 Hz
� if FM = U(05) then LBL8 : When the output frequency is 60 Hz
LBL1 Yw= 1 � � � : Output "1" to Yw.
� goto LBL7 � � �

LBL2 Yw= 2 � � : Output "2" to Yw.
� goto LBL7 � � �

LBL3 Yw= 3 � � : Output "3" to Yw.
� goto LBL7 � � �

LBL4 Yw= 4 � � : Output "4" to Yw.
� goto LBL7 � � �

LBL5 Yw= 5 � � : Output "5" to Yw.
� goto LBL7 � � �

LBL6 Yw= 6 � � : Output "6" to Yw.
LBL7 goto LOOP � � � �

LBL2 FW= 0 � � � : Decelerate and stop the motor.
� Wait RUN = 0 � � �

� end � � � � � �

�

(Data area [Data Window])
U (00) = 1000
U (01) = 2000
U (02) = 3000
U (03) = 4000
U (04) = 5000
U (05) = 6000

� �

�

Chapter 2 Syntax

2-22

UB () or UBw (internal user contact
control) Instruction to access internal user contacts�

Variable name Range of values Default Unit Data size Attribute
UB (00) to
UB (07)

Internal user contact
(bit access)

0: OFF
1: ON

0 -
Unsigned

1-word data
Readable

and writable

UBw Internal user contact
(word access)

0 to 255 0 -
Unsigned

1-word data
Readable

and writable

- Format
Format Description

1
<variable> = UB (ii)

(ii = 00 to 07)
This instruction assigns the ii'th bit of internal user contact data to
<variable>.

2
UB (ii) = <variable> or <constant>
 (ii = 00 to 07)

This instruction assigns <variable> or <constant> to the ii'th bit of
internal user contact data.

3 <variable> = UBw
This instruction assigns internal user contact data as word data to
<variable>.

4 UBw = <variable> or <constant> This instruction assigns <variable> or <constant> as word data to
internal user contact data.

- Explanation
Use this instruction to control the internal contacts that the user can use for general purposes. The inverter has eight
general-purpose contacts that are writable and readable by bit access (UB (00) to UB (07)) or word access (UBw). Details of
the formats are explained below.
Format 1 : With this format, the instruction reads the status of the ii'th bit of internal user contact data into <variable>.

(0 = off, 1 = on)
Format 2 : With this format, the instruction writes <variable> or <constant> to the ii'th bit of internal user contact data.

(0 = off, 1 = on, 2 or more = off)
Format 3 : With this format, the instruction reads internal user contact data as word data into <variable>.
Format 4 : With this format, the instruction writes <variable> or <constant> as word data to internal user contact data.

- Sample program
Sample 1 : Statement to read internal user contact status as bit data (format 1)

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� U(00)= UB(00) � � � � : Assign bit data of UB (00) to U (00).
� � � � � � � � �

Sample 2 : Statement to turn an internal user contact on (format 2)
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� UB(00)= 1 � � � : Assign "1" (bit-on status) to UB (00).
� � � � � � � � �

Sample 3 : Statement to read internal user contact status as word data (format 3)
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� U(00)= UBw � � � � : Assign word data of UBw to U (00).
� � � � � � � � �

Sample 4 : Statement to change internal user contact status in units of words (format 4)
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� UBw(00)= U(00) � � � � : Write word data of U (00) to UBw.
� � � � � � � � �

�

Chapter 2 Syntax

2.5 Timer Control Instructions
The easy sequence function of the inverter has a timer function that can be used in the following two modes:
(1) Free-running timer mode
(2) Timer contact output mode (timer-start, timer-stop, and delay operations)
 The timer function uses eight timer counter circuits that are configured as shown in the figure below.

�

Timer buffer (count)

Comparison for
matching

Latch

CLR

S

R

Q

Counting
cycle

(10 ms)

timer set
instruction

delay on/delay
off instruction

TD (k)

TC (k)

32

32

32

32

32

1

Up counter
(counting cycle:

10 ms)

CLR UP

<variable> or
<constant>

timer stop
instruction

In free-running timer mode

In timer contact output mode

TC (k): Timer counter variable (up counter)
TD (k): Timer contact (one-shot timer)

Block diagram for timer function

The timer counter is a 31-bit up counter that runs in a 10-ms cycle (1 count per 10 ms), and operates as a free-running timer when the
execution of a easy sequence program is started.
When the timer set, delay on, or delay off instruction is executed, the timer counter is cleared and restarted. While the timer counter is
operating, its count is compared with the count specified by a variable or constant to determine whether they match. When the counts
match each other, the timer counter stops counting.
When the timer off instruction is executed, the timer counter is cleared and restarted. Subsequently, the timer counter operates as a
free-running timer.

delay on Y (00) TD (0) 1000 delay off Y (00) TD (0) 1500

TC (0)

TD (0)

timer off TD (0)

Comparison
for matching

1500

1000

Y (00)

2^31-1

[PRN]

The
counter
starts.

2^31-1

Example of timer function operation

2-23

Chapter 2 Syntax

timer set (timer-start instruction) Instruction to set and start the timer counter�

- Format
Format Description

timer set TD (k) <variable> or <constant> This instruction sets <variable> or <constant> in the k'th
timer and starts the timer counter.

- Explanation
(1) The timer set instruction sets <variable> or <constant> in the k'th timer buffer, clears the timer counter (up counter) “TC

(k)” to zero, and then initiates counting by the timer counter. Then, the value of timer contact variable “TD (k)” is “0” (off).
(2) Subsequently, the instructions described after the timer set instruction are executed.
(3) When the timer counter “TC (k)” reaches the specified count, the value of timer contact variable “TD (k)” changes to “1” (on)

(only once). Then, the timer counter “TC (k)” stops counting.

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� FW= 1 � � � �

� timer set TD(0) 5.00 � � � : Start the 5-second timer counter.
� wait TD(0) = 1 � � : Wait until "1" (on) is set in TD (0).
� Y(00)= 1 � � � �

� � � � � � � � �

- ��� (����� !"#)

timer set TD (k) 1000 timer set TD (k) 1500

TC (k)

TD (k)

timer off TD (k)

Comparison
for matching

1500

1000

2^31-1 2^31-1

Timing chart for operation using the timer set instruction

�

�

2-24

Chapter 2 Syntax

2-25

timer off (timer-stop instruction) Instruction to stop the timer�

- Format
Format Description

timer off TD (k) This instruction clears the k'th timer and operates it as a free-running timer.

- Explanation
This instruction clears the k'th timer counter (up counter) “TC (k)” to zero, and starts the timer counter in free-running timer
mode. Then, the value of timer contact variable “TD (k)” is not changed. The timer counter “TC (k)” is switched from timer
contact output mode to free-running timer mode.

- Sample program
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� wait X(00) = 1 � � : Wait until terminal X (00) is turned on.
� Y(00)= 1 � � � : Turn terminal Y (00) on.
� delay on Y(01) TD(1) 1000 � � : Turn terminal Y (01) on with a delay.
� timer set TD(0) 15.00 � � � : Start the 15-second timer counter.
� if X(01) = 0 then LBL1 : Wait when terminal X (01) is off.
� timer off TD(1) � � � � : Clear timer counter TC (1).

LBL1 wait TD(0) = 1 � �
: Wait until the 15-second timer counter
ends counting.

� Y(02)= 1 � � �
: Turn terminal Y (02) on when the process
ends.

� � � � � � � � �

�

delay on or delay off (delay operation
instruction) Instruction to turn a variable on or off with a delay�

- Format
Format Description

delay on <variable 1> TD (k) <variable 2> or <constant>

This instruction sets the count of the k'th timer in
<variable 2> or <constant> and starts the timer
counter.
When timer output “TD (k)” is turned on,
<variable 1> is turned on.

delay off <variable 1> TD (k) <variable 2> or <constant>

This instruction sets the count of the k'th timer in
<variable 2> or <constant> and starts the timer
counter.
When timer output “TD (k)” is turned on,
<variable 1> is turned off.

- Explanation
(1) The delay on (or delay off) instruction sets <variable 2> or <constant> in the k'th timer buffer, clears the timer counter (up

counter) “TC (k)” to zero, and then initiates counting by the timer counter. Then, the value of timer output variable “TD (k)” is
“0” (off).

(2) Subsequently, the instructions described after the delay on (or delay off) instruction is executed.
(3) When the count of timer counter “TC (k)” matches the count preset in the timer buffer, the value of timer output variable “TD

(k)” changes to “1” (on) (only once), and <variable 1> is turned on (or off). Then, the timer counter “TC (k)” stops counting.

Chapter 2 Syntax

- Sample program : Program to make the inverter alternately repeat forward rotation of the motor at 60 Hz and reverse
rotation of the motor at 10 Hz

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� U(00)= � � 1000 � �
: The output frequency for reverse rotation
is 10 Hz.

� ACCEL= � � 1000 � � : Set the acceleration time to 10 seconds.
� DECEL= � � 1000 � � : Set the deceleration time to 10 seconds.
LOOP SET-Freq= � � 6000 � �

� FW= 1 � � �
: Accelerate the forward rotation speed up
to 60 Hz.

� wait RUN = 1 � � : Wait until the motor operates at 60 Hz.
� delay off FW TD(0) 15.00 � � : Start the 15-second timer counter.

� � � � � � � �
: Turn the FW terminal off after 15 seconds
elapse.

� wait RUN = 0 � � : Wait until the motor stops.

� delay on RV TD(0) 1.00 � �
: Start reverse rotation after 1 second
elapses.

� SET-Freq= � � 1000 � �
: Accelerate the reverse rotation speed up
to 10 Hz.

� � � � � � � �

� wait FM = U(00) � �
: Wait until the output frequency reaches
10 Hz.

� RV= 0 � � � � : Decelerate and stop the motor.
� Wait RUN = 0 � � : Wait until the motor stops.
� goto LOOP � � � � �

� � � � � � � � �

- Example of operation (timing chart)�

delay on Y (00) TD (0) 1000 delay off Y (00) TD (0) 1500

TC (0)

TD (0)

timer off TD (0)

Comparison
for matching

1500

1000

Y (00)

2^31-1 2^31-1

Timing chart for operation using the delay on and delay off instructions
�

�

2-26

Chapter 2 Syntax

2-27

2.6 Inverter Control Instructions

Inverter operation command Instruction to turn the input terminal function on or off�

- Format
Format Description

<input terminal function>= <variable> or
<constant>

This instruction turns <input terminal function> of the inverter
on or off according to the value of <variable> or <constant>.

- Explanation
This instruction turns the inverter input terminal specified by <input terminal function> on or off according to the value of
<variable> or <constant>. When the value of <variable> or <constant> is 0, 1, or 2 or more, the input terminal specified by
<input terminal function> is turned off, on, or off, respectively.
The function and operation of the specified input terminal are the same as those that can be specified by the terminal functions
(SJ700/L700/SJ700B : C001 to C008 / WJ200 : C001 to C007) on the inverter. For details, refer to the Inverter Instruction
Manual.

- Sample program: Program to make the inverter alternately repeat forward acceleration and deceleration, and reverse
acceleration and deceleration of the motor at 60 Hz

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� SET-Freq= � � 6000 � � �

LOOP FW= 1 � � � � : Turn the FW terminal on.
� wait X(01) = 1 � � : Wait until X (01) is turned on.
� FW= 0 � � � : Turn the FW terminal off.
� wait RUN = 0 � � : Wait until the motor stops.
� RV= 1 � � � : Turn the RV terminal on.
� wait X(02) = 1 � � : Wait until X (02) is turned on.
� RV= 0 � � � : Turn the RV terminal off.
� wait RUN = 0 � � : Wait until the motor stops.
� goto LOOP � � � � �

� � � � � � � � �

�

Chapter 2 Syntax

2-28

Inverter operation monitoring instruction Instruction to monitor the output terminal function�

- Format
Format Description

<variable 1> = <output terminal function> This instruction fetches the on / off status of <output terminal
function> of the inverter and stores it in <variable 1>.

- Explanation
This instruction fetches the on / off status of the inverter output terminal specified by <output terminal function> and stores it
in <variable 1>. When the specified output terminal is off, the value of <variable 1> is “0”; when it is on, the value of <variable
1> is “1”.
The function and operation of the specified output terminal are the same as those that can be specified by the terminal function
(SJ700 /L700/SJ700B: C021 to C026 / WJ200 : C021, C022, and C026) on the inverter. For details, refer to the Inverter
Instruction Manual.

- Sample program�
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� SET-Freq= � � 6000 � � : Set the output frequency to 60 Hz.
� ACCEL= � � 1000 � � : Set the acceleration time to 10 seconds.
� DECEL= � � 1000 � � : Set the deceleration time to 10 seconds.
� FW= 1 � � �

� wait X(01) = 1 � � : Wait until X (01) is turned on.

� ACCEL= � � 3000 � �
: Increase the acceleration time to 30
seconds.

� wait FA1 = 1 � �
: Wait until the output frequency reaches
the set frequency.

LOOP if X(02) <> 1 then LBL1 : Wait until X (02) is turned on.
� SET-Freq= � � 500 � � : Reduce the set frequency to 5 Hz.
LBL1 UB(00)= ZS � � � �

� if UB(00) <> 1 then LOOP

� DECEL= � � 3000 � �
: Increase the deceleration time to 30
seconds when ZS is on.

� wait 10.00 � � � � : Operate the motor at 5 Hz for 10
seconds.

� FW= 0 � � � � : Decelerate and stop the motor.
� � � � � � � � �

�

 (Parameter)�
C063 = 5.0Hz

Chapter 2 Syntax

2-29

�

User Monitor Operator display variable�

Umon (00) to
Umon (02)

Variable name Range of values Default Unit Data size Attribute

User monitor 0 to 2 -231 – 231-1 0 -
Signed

2-word data
Readable

and writable

- Format
Format Description

Umon (ii) = <variable> Displays <variable> on user monitor (ii)
Umon (ii) = <variable1> <operator>
<variable>.

Displays the result of operation with <variable1> and <variable2> on user
monitor (ii)

<variable> = Umon (ii) Value of user monitor (ii) is read out to <variable>

- Explanation
This instruction displays arbitrary data to the digital operator of the inverter.
Each display variable and the correspondence of the display code are as follows.
 Umon (00) : User monitor 0 (d025)
 Umon (01) : User monitor 1 (d026)
 Umon (02) : User monitor 2 (d027)

- Sample program : Program to display the summation of U (01) and U (02) on user monitor 2 (d027)
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
 � � � � � � �

� Umon(02)= U(01) + U(02) � �

 � � � � � � �

User Trip User trip issue command�

- Format
Format Description

trip <variable> Makes the inverter trip

- Explanation
This instruction makes inverter trip. Range of <variable> is 0 to 9.�

Note : When the user trip occurs without the description of on trip go to instruction, the program stops
immediately after the occurrence of inverter trip.

- Sample program : Program to issue the user trip 2 (E52) when the summation of variable 1 and variable2 exceeds 20�
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
 � � � � � � �

� U(00)= U(01) + U(02) � �

� if U(00) > 20 � �

� then � � � � �

� trip 2 � � � �

� else � � � � �

 � � � � � � �

Chapter 2 Syntax

2-30

stop statement Instruction to stop motor operation by the inverter�

- Format
Format Description

stop This instruction makes the inverter decelerate and stop the motor.

- Explanation
This instruction makes the inverter decelerate and stop the motor and reset the inverter when it is in trip situation.
When the FW terminal is on (FW = 1) or the RV terminal is on (RV = 1), this instruction turns off the FW terminal (FW = 0) or
RV terminal (RV = 0).

- Sample program : Program to make the inverter operate the motor for forward or reverse rotation at a constant speed for 10
seconds�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� if X(00) <> 1 then LBL1 �

� FW= 1 � � �
: When X (00) is on, operate the motor for
forward rotation.

� goto LBL2 � � � �

LBL1 RV= 1 � � �
: When X (00) is on, operate the motor for
reverse rotation.

LBL2 wait FA1 = 1 � �
: Wait until the motor rotates at a constant
speed.

� wait 10.00 � � � �
: Operate the motor at 5 Hz for 10
seconds.

� stop � � � � �
: Decelerate and stop the motor. (FW = 0
or RV = 0)

� � � � � � � � �

chg param statement Instruction to change a parameter setting�

- Format
Format Description

chg param <display code> <variable> or <constant>
This instruction changes the setting of the inverter
parameter specified by <display code> to
<variable> or <constant>.

- Explanation
<display code> specifies the parameter number of the inverter parameter of which the setting is to be changed. The range of
parameter settings depends on the standard inverter specifications. For the inverter parameters and ranges of their settings,
refer to the Inverter Instruction Manual.
Specify an integer as the desired new setting of the parameter in <variable> or <constant>. To specify a numerical value other
than 0 to 127, preset the value in a variable and specify the variable as <variable>. The changed parameter setting is reflected
in the inverter in a 40-ms cycle, which conforms to the standard inverter specifications. If, however, you directly access the
inverter's EEPROM, the change is reflected in the inverter in the same cycle as that of instruction execution.

Note 1 : You cannot specify any of parameters “U001” to “U012” in <display code>.
Note 2 : When the parameter is changed, it is not memorized in EEPROM. It returns to an initial value by the power

shutdown.

Chapter 2 Syntax

2-31

- Sample program : Program to change the overload restriction level according to output frequency�
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� U(00)= � � 2000 � � : Set 200% in variable "U (00)."
� U(01)= � � 1500 � � : Set 150% in variable "U (01)."
� U(02)= � � 1000 � � : Set 100% in variable "U (02)."
� U(03)= � � 1000 � � : Set 10 Hz in variable "U (03)."
� chg param b022 U(00) � � � : Change the setting of "b022" to 200.0%
� FW= 1 � � �

� wait FM >= U(03) � �
: Wait until the output frequency reaches

10 Hz.
� chg param b022 U(01) � � � : Change the setting of "b022" to 150.0%.
� wait FA1 = 1 � � : Wait until acceleration ends.
� chg param b022 U(02) � � � : Change the setting of "b022" to 100.0%.
� � � � � � � � �

�

(Parameter)�
b031 = 10 (can be updated during operation)

mon param statement Instruction to read a parameter�

- Format
Format Description

mon param <display code> <variable>
This instruction assigns the content of the inverter
parameter specified by <display code> to
<variable>.

- Explanation
This instruction reads the content of the inverter parameter specified by <display code>, and assigns the read content to
<variable>. The range of parameter settings depends on the standard inverter specifications. For the inverter parameters and
ranges of their settings, refer to the Inverter Instruction Manual.
�

- Sample program : Program to check whether the inputs of frequency command and acceleration/deceleration time are
assigned to the easy sequence function�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

� Yw= 0 � � � �

� mon param A001 U(00) � � � : Assign the content of A001 to U (00).
� mon param P031 U(01) � � � : Assign the content of P031 to U (01).
� if U(00) <> 7 then SKIP : When A001 is not "07"
� if U(01) <> 3 then SKIP : When P031 is not "03"
� Y(00)= 1 � � : Turn Y (00) on.
� goto LBL1 � � � �

SKIP Y(01)= 1 � � � : Turn Y (01) on when the process ends.
LBL1 end � � � � � �

�

Chapter 2 Syntax

2-32

�

eepwrt Instruction to issue a demand to write the parameter to EEPROM

- Format
Format Description

eepwrt

This instruction stores a data of only one parameter
changed by chg param command that is issued
immediately after the execution of eeprwrt
command to EEPROM.

- Explanation
This instruction is a function in the WJ200 Series.
This instruction stores the content of the parameter of the inverter in EEPROM. It combines chg param command and realizes
a function. eepwrt issues a demand to write the data to EEPROM. Afterwards, a parameter changed by chg prm is stored to
EEPROM. The range of parameter settings depends on the standard inverter specifications. For the inverter parameters and
ranges of their settings, refer to the WJ200 Series Inverter Instruction Manual.

Note 1 : After chg param is executed, the demand to write to EEPROM is cleared. It is necessary to reissue eepwrt
instruction to store the content of the parameter newly changed by chg param to EEPROM.

Note 2 : A continuous writing to EEPROM by the eepwrt instruction is a prohibition. Please create the user program
so that the execution interval of the eepwrt instruction may become 30ms or more when writing the
parameter in EEPROM two times or more.

- Sample program : Program to configure multispeed frequency 1 and 2 with general-purpose analog inputs�
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

LOOP UL(00)= � � XA(0) � � : Fetch analog input "O" data.
� UL(00)= UL(00) * 50 � � : Convert the scale.
� UL(00)= UL(00) / 100 � � �

� UL(00)= UL(00) + 1000 � � �

� UL(01)= � � XA(1) � � : Fetch analog input "OI" data.
� UL(01)= UL(01) * 50 � � : Convert the scale.
� UL(01)= UL(01) / 100 � � �

� UL(01)= UL(01) + 1000 � � �

� eepwrt � � � � � �Demand to write to EEPROM.
� chg param A021 UL(00) � � � �

� wait 0.03 � � � � : Wait 30 ms.
� eepwrt � � � � � �Demand to write to EEPROM.
� chg param A022 UL(01) � � � �

� wait 0.03 � � � � : Wait 30 ms.
� goto LOOP � � � � �

� end � � � � � �

�

Chapter 2 Syntax

2-33

�

rtcset on, rtcset off Instruction to start / stop the update of clock data�

- Format
Format Description

rtcset on <variable>
The clock data is substituted for six bytes that make
<variable> a head. Moreover, the clock data is
regularly updated.

rtcset off <variable>
The clock data is substituted for six bytes that make
<variable> a head. Moreover, the update of the
clock data is stopped.

- Explanation
This instruction is a function in the WJ200 Series.�
The clock data of six bytes sent from WOP is stored in six bytes that make <variable> a head. Clock data is 1 byte for each in
"year", "month", "date", "day of the week", "hour" and "minute".
In the rtcset on instruction, the clock data is regularly updated after the clock data is substituted.
In the rtcset off instruction, the update of the clock data by rtcset on instruction is stopped after the clock data is substituted.

The data stored in “rtcset on / off U (00)” are as follows.

Example) Monday, April 19, 2010 11:15
U (00) = 1004h = 4100� � (The last 2 digits at the year: 00h to 99h / Month: 01h to 12h)
U (01) = 1901h = 6401� � (Date: 01h to 31h / Day of the week: Sun.(00h) to Sat.(06h))
U (02) = 1115h = 4373� � (Hour: 00h to 23h / Minute: 00h to 59h)

Moreover, it is as follows when a variable is set to UL (00).

UL (00) = 10041901h = 268704001� � �The last 2 digits at the year / Month / Date / Day of the week�
UL (01) = 11150000h = 286588928� � �hour / Minute / 0000h�

Note : It is necessary to connect WOP with the inverter to acquire the clock data. When WOP is not connected, all
clock data is set to 0.

- Sample program : Program to make the inverter operate the motor for forward rotation for 1 hour
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 � �

� entry � � � � � �

� rtcset off U(02) � � : Clock data is stored in U (02) to U (04).
� U(04)= U(04) + U(00) � � : Add to the present time for 1 hour.

� ifs U(04) >= U(01) � �
: When it will be data more than in 24:00,

it pulls for 24 hours.
� then � � � � � �

� U(04)= U(04) - U(01) � �

� end if � � � � �

� rtcset on U(05) � � � : Clock data is stored in U (05) to U (07).
� FW= 1 � � � : Start forward rotation of the motor.
LOOP if U(07) <> U(04) then LOOP �

� rtcset off U(05) � � � : Stop the update of the clock data.
� FW= 0 � � � � : Decelerate and stop the motor.
� end � � � � � �

(Data area [Data Window])
U(00) = &H0100 $1 hour
U(01) = &H2400 $24:00

Chapter 2 Syntax

2-34

2.7 Other Reserved Variables

U (00) to
U (31)

Variable name Range of values Default Unit Data size Attribute

User-defined variable 0 to 65535

Data
stored in
P100 to
P131

-
Unsigned

1-word data
Readable

and writable

- Explanation
User-designed variables are the general-purpose functions that can be used as unsigned 1-word variables regardless of
format. The data written from a sequence program to the user-defined variables is not stored in the inverter's EEPROM. The
variables will restore the initial settings when the inverter power is turned off. The user-defined variables correspond to inverter
parameters “P100” to “P131”. You can also change the settings of user-defined variables from the digital operator. The changes
made from the digital operator will be stored in EEPROM.

- Sample program �
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
� � � � � � � �

� U(00)= U(00) + U(01) � �

� U(02)= U(00) * U(02) � �

� U(03)= U(00) mod U(01) � �

UL (00) to
UL (07)

Variable name Range of values Default Unit Data size Attribute

Internal user variable -231 to 231-1 0 -
Signed

2-word data
Readable

and writable

- Explanation
Internal user variables are the general-purpose functions that can be used as unsigned 2-word variables, for example, to
temporarily store arithmetic operation results.

Note : If an arithmetic operation causes data overflow, an execution error (E45) will result.

- Sample program �
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � �

� UL(00)= � � Tmon � � : Acquire the output torque data.
� if UL(00) >= 0 then SKIP : When the output torque is a positive value
� UL(01)= � � -1 � �

� UL(00)= U(01) * UL(00) � �
: When the output torque is a negative value
(x -1)

SKIP U(05)= � � UL(00) � �

� U(05)= U(05) * 100 � � : Convert the scale.
� U(05)= U(05) / 300 � �

� YA(1)= � � U(05) � �
: Output the data to general-purpose analog
output.

� � � � � � � � �

�

�

�

�

Chapter 2 Syntax

2-35

SET-Freq
Variable name Range of values Default Unit Data size Attribute

Output frequency setting 0 to 40000 0 0.01 Hz
Unsigned

1-word data
Readable

and writable

- Explanation
This variable can be used to read and write the frequency specified by the output frequency setting (F001) in the inverter. (See
Note 1 and 2.) The setting of this variable corresponds to inverter parameter “F001”. The data written to this variable is not
stored in the inverter's EEPROM. This variable will restore the initial setting when the inverter power is turned off. When the
inverter receives an operation command (FW = 1 or RV = 1), it accelerates the motor up to the frequency that was set last.

Note 1 : To reflect the frequency written in this variable as the set frequency, you must change the setting of
frequency source setting (A001) to “07” (PRG).

Note 2 : This variable can be read regardless of the setting of “A001”. The currently applied set frequency is read
from this variable.

- Sample program : Program to alternately repeat forward rotation of the motor at 60 Hz and reverse rotation at 10 Hz
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

LOOP SET-Freq= � � 6000 � � : Set the output frequency to 60 Hz.
� FW= 1 � � � : Start forward rotation of the motor.

� wait FA1 = 1 � �
: Wait until the output frequency reaches
the set frequency.

� wait 10.00 � � � � : Operate the motor for 10 seconds.
� FW= 0 � � � : Decelerate and stop the motor.
� wait RUN = 0 � � : Wait until the motor stops.
� SET-Freq= � � 1000 � � : Change the set frequency to 10 Hz.
� RV= 1 � � � : Start reverse rotation of the motor.

� wait FA1 = 1 � �
: Wait until the output frequency reaches
the set frequency.

� wait 10.00 � � � � : Operate the motor for 10 seconds.
� RV= 0 � � � : Decelerate and stop the motor.
� wait RUN = 0 � � : Wait until the motor stops.
� goto LOOP � � � � �

� end � � � � � �

�

(Parameter)
A001 = 07

�

Chapter 2 Syntax

2-36

ACCEL
Variable name Range of values Default Unit Data size Attribute

Acceleration time setting 1 to 360000 Note 1
0.01

second
Unsigned

2-word data
Readable

and writable

- Explanation
This variable can be used to read and write the motor acceleration time in the inverter. The acceleration time setting using this
variable is enabled only when the setting of accel/decel time input selection (P031) is “03” (PRG). (The setting of this variable
does not correspond to the setting of inverter parameter “F002”.) The data written to this variable is not stored in the inverter's
EEPROM. This variable will restore the initial setting when the inverter power is turned off.

Note 1 : Default (the inverter power is turned on) acceleration time follows the setting of inverter parameter “F002”,
“F202”, or “F302”. For details, refer to the Inverter Instruction Manual.

Note 2 : When a program writes a value to this variable, the value is reflected in the inverter in a 40-ms cycle, which
conforms to the standard inverter specifications.

- Sample program : Program to change the acceleration time according to output frequency
(Code area [Code Window])

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� SET-Freq= � � 6000 � � : Set the output frequency to 60 Hz.
� ACCEL= � � 1000 � � : Set the acceleration time to 10 seconds.
� FW= 1 � � � : Start forward rotation of the motor.

LOOP if FW < U(00) then LBL1 : When the output frequency is less than 5 Hz,
set the acceleration time to 10 seconds.

� if FM < U(01) then LBL2 : When the output frequency is less than 10 Hz,
change the acceleration time to 5 seconds.

� if FM < U(02) then LBL3 : When the output frequency is less than 30 Hz,
change the acceleration time to 1 second.

� if FM < U(03) then LBL4 : When the output frequency is less than 50 Hz,
change the acceleration time to 5 seconds.

� if FM < U(04) then LBL5 : When the output frequency is less than 55 Hz,
change the acceleration time to 10 seconds.

� if FM < U(05) then LBL6 : When the output frequency is less than 60 Hz,
change the acceleration time to 20 seconds.

� if FM >= U(05) then LBL8 : When the output frequency reaches or
exceeds 60 Hz, end acceleration.

� goto LBL7 � � � �

LBL1 ACCEL= � � 1000 � �

� goto LBL7 � � � �

LBL2 ACCEL= � � 500 � �

� goto LBL7 � � � �

LBL3 ACCEL= � � 100 � �

� goto LBL7 � � � �

LBL4 ACCEL= � � 500 � �

� goto LBL7 � � � �

LBL5 ACCEL= � � 1000 � �

� goto LBL7 � � � �

LBL6 ACCEL= � � 2000 � �

LBL7 goto LOOP � � � �

LBL8 Y(00)= 1 � � � : Turn Y (00) on when acceleration ends.
� � � � � � � � �

(Data area [Data Window])
U (00) = 500 : Set the frequency of 5 Hz in variable “U (00)”.
U (01) = 1000 : Set the frequency of 10 Hz in variable “U (01)”.
U (02) = 3000 : Set the frequency of 30 Hz in variable “U (02)”.
U (03) = 5000 : Set the frequency of 50 Hz in variable “U (03)”.
U (04) = 5500 : Set the frequency of 55 Hz in variable “U (04)”.
U (05) = 6000 : Set the frequency of 60 Hz in variable “U (05)”.

(Parameters)
A001 = 07 P031 = 03

Chapter 2 Syntax

2-37

DECEL
Variable name Range of values Default Unit Data size Attribute

Deceleration time setting 1 to 360000 Note 1
0.01

second
Unsigned

2-word data
Readable

and writable

- Explanation
This variable can be used to read and write the motor deceleration time in the inverter. The deceleration time setting using this
variable is enabled only when the setting of accel/decel time input selection (P031) is “03” (PRG). (The setting of this variable
does not correspond to the setting of inverter parameter “F003”.) The data written to this variable is not stored in the inverter's
EEPROM. This variable will restore the initial setting when the inverter power is turned off.

Note 1 : Default (the inverter power is turned on) deceleration time follows the deceleration (1) time setting “F003”,
“F203”, or “F303”. For details, refer to the Inverter Instruction Manual.

Note 2 : When a program writes a value to this variable, the value is reflected in the inverter in a 40-ms cycle, which
conforms to the standard inverter specifications.

- Sample program : Program to change the deceleration time according to output frequency
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� DECEL= � � 3000 � � : Set the deceleration time to 30 seconds.
� FW= 0 � � � : Start deceleration of the motor.

� wait FM < U(04) � �
: Wait until the output frequency falls below
55 Hz.

� DECEL= � � 1000 � �
: Change the deceleration time to 10
seconds.

� wait FM < U(03) � �
: Wait until the output frequency falls below
50 Hz.

� DECEL= � � 500 � �
: Change the deceleration time to 5
seconds.

� wait FM < U(02) � �
: Wait until the output frequency falls below
30 Hz.

� DECEL= � � 1000 � �
: Change the deceleration time to 10
seconds.

� wait FM < U(01) � �
: Wait until the output frequency falls below
10 Hz.

� DECEL= � � 3000 � �
: Change the deceleration time to 30
seconds.

� wait FM < U(00) � �
: Wait until the output frequency falls below
5 Hz.

� DECEL= � � 6000 � �
: Change the deceleration time to 60
seconds.

� wait RUN = 0 � � : Wait until the motor stops.
� Y(01)= 1 � � � : Turn Y (00) on when acceleration ends.
� � � � � � � � �

(Data area [Data Window])
U (00) = 500 : Set the frequency of 5 Hz in variable “U (00)”.
U (01) = 1000 : Set the frequency of 10 Hz in variable “U (01)”.
U (02) = 3000 : Set the frequency of 30 Hz in variable “U (02)”.
U (03) = 5000 : Set the frequency of 50 Hz in variable “U (03)”.
U (04) = 5500 : Set the frequency of 55 Hz in variable “U (04)”.
U (05) = 6000 : Set the frequency of 60 Hz in variable “U (05)”.

(Parameters)
P031 = 03

Chapter 2 Syntax

2-38

XA (0) to XA (2)
Variable name Range of values Default Unit Data size Attribute

XA (0) General-purpose analog
input (O terminal)

0 to 10000

0 0.01 %
Unsigned

1-word data
Readable XA (1) General-purpose analog

input (OI terminal)
0 to 10000

XA (2) General-purpose analog
input (O2 terminal)

-10000 to 10000

- Explanation
These variables can be used to monitor the data input to the O, OI, and O2 terminals (among the analog input terminals of the
inverter) in a data range from -100.00 to +100.00. The analog inputs monitored with these variables correspond to the data set
by the [O]-[L], [OI]-[L], and [O2]-[L] input functions (A011 to A015, A101 to A105, and A111 to A114).
The WJ200 Series doesn't correspond to XA (2). For details, refer to the Inverter Instruction Manual.
�

- Sample program : Program to configure output frequencies in steps of 10 Hz with general-purpose analog inputs
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� FW= 1 � � � �

LOOP UL(00)= � � XA(0) � � : Fetch analog input data.
� UL(00)= UL(00) * 60 � � : Convert the scale.
� UL(00)= UL(00) / 100 � �

� if U(00) < U(00) then LBL1 : When data is less than 16.67%, set the
output frequency to 10 Hz.

� if U(00) < U(01) then LBL2 : When data is less than 33.33%, set the
output frequency to 20 Hz.

� if U(00) < U(02) then LBL3 : When data is less than 50.00%, set the
output frequency to 30 Hz.

� if U(00) < U(03) then LBL4 : When data is less than 66.67%, set the
output frequency to 40 Hz.

� if U(00) < U(04) then LBL5 : When data is less than 83.33%, set the
output frequency to 50 Hz.

� if U(00) < U(05) then LBL6 : When data is less than 100.00%, set the
output frequency to 60 Hz.

� goto LBL7 � � � � �

LBL1 SET-Freq= � � 1000 � � �

� goto LBL7 � � � � �

LBL2 SET-Freq= � � 2000 � � �

� goto LBL7 � � � � �

LBL3 SET-Freq= � � 3000 � � �

� goto LBL7 � � � � �

LBL4 SET-Freq= � � 4000 � � �

� goto LBL7 � � � � �

LBL5 SET-Freq= � � 5000 � � �

� goto LBL7 � � � � �

LBL6 SET-Freq= � � 6000 � � �

LBL7 goto LOOP � � � � �

� � � � � � � � �

(Data area [Data Window])
U (00) = 1000
U (01) = 2000
U (02) = 3000
U (03) = 4000
U (04) = 5000
U (05) = 6000

Chapter 2 Syntax

2-39

YA (0) to YA (2)
Variable name Range of values Default Unit Data size Attribute

YA (0)

General-purpose analog
output
(SJ700 : FM terminal)
(WJ200 : EO terminal)

0 to 10000 0 0.01 %
Unsigned

1-word data
Readable

and writableYA (1) General-purpose analog
output (AM terminal)

YA (2) General-purpose analog
output (AMI terminal)

- Explanation
These variables can be used to monitor the data output to the FM or EO, AM, and AMI terminals (analog output terminals of
the inverter) in a data range from 0% to 100.00%. To obtain the analog outputs, you must assign general-purpose output
functions to the FM or EO, AM, and AMI terminals with inverter parameters “C027”, “C028”, and “C029”.
The WJ200 Series doesn't correspond to YA (2). For details, refer to the Inverter Instruction Manual.

YA (0) : FM or EO output terminal (C027 = 12 [YA0])
YA (1) : AM output terminal (C028 = 13 [YA1])
YA (2) : AMI output terminal (C029 = 14 [YA2])

- Sample program : Program to output inverter output frequency data to a general-purpose analog output as data that is
one-half of the full-scale data

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� FW= 1 � � � �

LOOP UL(00)= � � XA(0) � � : Fetch analog input data.
� UL(00)= UL(00) * 60 � � : Convert the scale.
� UL(00)= UL(00) / 100 � �

� SET-Freq= � � UL(00) � � : Set the output frequency.
� UL(01)= FM * 100 � �

� UL(01)= UL(01) / 60 � � : Convert the scale.

� YA(1)= UL(01) / 2 � �
: Output data that is one-half of the
full-scale data.

� goto LOOP � � � � �

� � � � � � � � �

�

Chapter 2 Syntax

2-40

TC (0) to
TC (7)

Variable name Range of values Default Unit Data size Attribute

Timer counters 0 to 231-1 0 10 ms
Unsigned

2-word data
Readable

and writable

- Explanation
These variables can be used to monitor the counts of the timer counters. The timer counters “TC (0)” to “TC (7)” usually
operate as 31-bit free-running timer counters that start simultaneously with user program startup and are incremented in a
10-ms cycle.
When a timer-start instruction (timer set) or delay operation instruction (delay on or delay off) is executed, the timer counter
corresponding to the instruction operates as the counter for output to a specified timer contact. In this case, the counter is
cleared to zero when the instruction is executed, starts counting, and then stops counting upon reaching the specified count.
When a timer-stop instruction (timer off) is executed, the timer counter corresponding to the instruction is cleared to zero and
operates as a 31-bit free-running timer counter that is incremented in a 10-ms cycle.

- Sample program : Program to accelerate the motor step-by-step by using a free-running timer
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� ACCEL= � � 1000 � � : Set the acceleration time to 10 seconds.
� DECEL= � � 1000 � � : Set the deceleration time to 10 seconds.
� SET-Freq= � � 0 � � : Set the output frequency to 0 Hz.
LOOP FW= 1 � � � : Start forward rotation of the motor.
� if TC(5) < U(00) then LBL1 : When TC (5) indicates less than 10 seconds
� if TC(5) < U(01) then LBL2 : When TC (5) indicates less than 20 seconds
� if TC(5) < U(02) then LBL3 : When TC (5) indicates less than 30 seconds
� if TC(5) >= U(03) then LBL4 : When TC (5) indicates 40 seconds or more

LBL1 SET-Freq= � � 1000 � �
: When TC (5) is less than 10 seconds,
increase the output frequency to 10 Hz.

� goto LBL5 � � � �

LBL2 SET-Freq= � � 3000 � �
: When TC (5) is less than 20 seconds,
increase the output frequency to 30 Hz.

� goto LBL5 � � � �

LBL3 SET-Freq= � � 6000 � �
: When TC (5) is less than 30 seconds,
increase the output frequency to 60 Hz.

� goto LBL5 � � � �

LBL4 FW= 0 � � � �
: When TC (5) is 40 seconds or more,
decelerate and stop the motor.

� wait RUN = 0 � � : Wait until the motor stops.
� SET-Freq= � � 0 � � : Set the output frequency to 0 Hz.
� TC(5)= � � 0 � � : Clear TC (5) to zero.
LBL5 goto LOOP � � � � �

� � � � � � � � �

�

(Data area [Data Window])
U (00) = 1000 : Set 10 seconds in variable “U (00)”.
U (01) = 2000 : Set 20 seconds in variable “U (01)”.
U (02) = 3000 : Set 30 seconds in variable “U (02)”.
U (03) = 4000 : Set 40 seconds in variable “U (03)”.

�

Chapter 2 Syntax

2-41

TD (0) to TD (7), TDw
Variable name Range of values Default Unit Data size Attribute

TD (0) to
TD (7)�

Timer contact output
(bit access)

0: Off
1: On

0 -
Unsigned

1-word data
Readable

TDw Timer contact output
(word access)

0 to 255 0 -
Unsigned

1-word data
Readable

- Explanation
The data in timer contact output variables “TD (0)” to “TD (7)” is changed only when these variables are specified in the
timer-start instruction (timer set) or delay operation instruction (delay on or delay off). A timer contact output variable is set to “0”
(off) when the counter corresponding to the contact output is cleared to zero; the variable is set to “1” (on) when the counter
stops counting.
While a timer counter variable “TC (k)” is being used for a free-running timer counter, timer contact output variable “TD (k)”
corresponding to the timer counter variable retains its status.

- Sample program : Program to accelerate the motor step-by-step by using a timer contact
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� TDw= � � 0 � � �

� ACCEL= � � 1000 � � : Set the acceleration time to 10 seconds.
� DECEL= � � 1000 � � : Set the deceleration time to 10 seconds.
� SET-Freq= � � 0 � � : Set the output frequency to 0 Hz.
LOOP FW= 1 � � � : Start forward rotation of the motor.
� timer set TD(5) 10.00 � � � : Start the 10-second timer counter.

� SET-Freq= � � 1000 � �
: Keep the output frequency at 10 Hz for
10 seconds.

� wait TD(5) = 1 � � : Wait until the timer contact is turned on.
� timer set TD(5) 10.00 � � � : Start the 10-second timer counter.

� SET-Freq= � � 3000 � �
: Keep the output frequency at 30 Hz for
10 seconds.

� wait TD(5) = 1 � � : Wait until the timer contact is turned on.
� timer set TD(5) 10.00 � � � : Start the 10-second timer counter.

� SET-Freq= � � 6000 � �
: Keep the output frequency at 60 Hz for
10 seconds.

� wait TD(5) = 1 � � : Wait until the timer contact is turned on.
� FW= 0 � � �

� wait RUN = 0 � � : Wait until the motor stops.
� SET-Freq= � � 0 � � : Set the output frequency to 0 Hz.
� goto LOOP � � � � �

� � � � � � � � �

�

Chapter 2 Syntax

2-42

2.8 Inverter Montor Variables

FM�
Variable name Range of values Default Unit Data size Attribute

Output frequency monitoring 0 to 40000 - 0.01 Hz
Unsigned

1-word data
Readable

- Explanation
This variable can be used to monitor the inverter output frequency. The data monitored with this variable corresponds to the
data monitored by the output frequency monitoring function (d001). This variable is read-only. For details, refer to the Inverter
Instruction Manual.

- Sample program : Program to turn a contact output on when output frequency exceeds 50 Hz and turn the contact output off
when output frequency falls below 10 Hz�

(Code area [Code Window])�
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

LOOP if FM < U(00) then LBL1 : When the output frequency is less than 10 Hz
� if FM > U(01) then LBL2 : When the output frequency is more than 50 Hz
� goto LBL3 � � � �

LBL1 UB(02)= 0 � � � : Turn UB (02) off.
� goto LBL3 � � � �

LBL2 UB(02)= 1 � � � : Turn UB (02) on.
LBL3 Y(02)= UB(02) � � � � : Set the data of UB (02) in Y (02).
� goto LOOP � � � � �

� � � � � � � � �

(Data area [Data Window])
U(00) = 1000 : Set the frequency of 10 Hz in variable “U (00)”.
U(01) = 5000 : Set the frequency of 50 Hz in variable “U (01)”.

Chapter 2 Syntax

2-43

Iout
Variable name Range of values Default Unit Data size Attribute

Output current monitoring 0 to 9999 - 0.01 %
Unsigned

1-word data
Readable

- Explanation
This variable can be used to monitor the inverter output current. The data monitored with this variable corresponds to the data
monitored by the output current monitoring function (d002). The monitored data indicates the ratio of present output current to
rated current of the inverter. This variable is read-only. For details, refer to the Inverter Instruction Manual.

- Sample program : Program to accelerate the motor while increasing the acceleration time when output current is high
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

LOOP U(10)= � � Iout � � : Fetch the output current data.

� if U(10) <= U(05) then LBL1 ; When output current is 50% or less, change
the acceleration time to 1 second.

� if U(10) <= U(04) then LBL2 : When output current is 80% or less, change
the acceleration time to 2 seconds.

� if U(10) <= U(03) then LBL3 : When output current is 100% or less, change
the acceleration time to 5 seconds.

� if U(10) <= U(02) then LBL4 : When output current is 150% or less, change
the acceleration time to 10 seconds.

� if U(10) <= U(01) then LBL5 : When output current is 180% or less, change
the acceleration time to 20 seconds.

� if U(10) <= U(00) then LBL6 : When output current is 200% or less, change
the acceleration time to 50 seconds.

� if U(10) > U(00) then LBL7 : When output current exceeds 200%, change
the acceleration time to 100 seconds.

� goto LBL8 � � � �

LBL1 ACCEL= � � 100 � �

� goto LBL8 � � � �

LBL2 ACCEL= � � 200 � �

� goto LBL8 � � � �

LBL3 ACCEL= � � 500 � �

� goto LBL8 � � � �

LBL4 ACCEL= � � 1000 � �

� goto LBL8 � � � �

LBL5 ACCEL= � � 2000 � �

� goto LBL8 � � � �

LBL6 ACCEL= � � 5000 � �

� goto LBL8 � � � �

LBL7 ACCEL= � � 10000 � �

LBL8 if FA1 = 1 then LBL9
� goto LOOP � � � �

LBL9 Y(00)= 1 � � � : Turn Y (00) on when acceleration ends.
� � � � � � � � �

(Data area [Data Window])
U (00) = 2000 : Set output current of 200% in variable “U (00)”.
U (01) = 1800 : Set output current of 180% in variable “U (01)”.
U (02) = 1500 : Set output current of 120% in variable “U (02)”.
U (03) = 1000 : Set output current of 100% in variable “U (03)”.
U (04) = 800 : Set output current of 80% in variable “U (04)”.
U (05) = 500 : Set output current of 50% in variable “U (05)”.

(Parameter)
P031 = 03

Chapter 2 Syntax

2-44

Dir

Variable name Range of values Default Unit Data size Attribute

Rotation direction
monitoring

0: Stop
1: Forward rotation
2: Reverse rotation

- -
Unsigned

1-word data
Readable

- Explanation
This variable can be used to monitor the direction of motor operation by the inverter. The data monitored with this variable
corresponds to the data monitored by the rotation direction monitoring function (d003). This variable is read-only.

- Sample program : Program to output the output frequency data to a general-purpose analog output while operating the motor
for reverse rotation at 60 Hz and forward rotation at 60 Hz�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� U(00)= � � 5000 � � : Set the offset data.
LOOP U(01)= � � Dir � � : Fetch the operation direction data.
� UL(01)= � � FM � � : Fetch the output frequency data.
� UL(01)= UL(01) * 5000 � � : Convert the scale to 0% to 50%.
� UL(01)= UL(01) / 6000 � �

� select U(01) � � � �

� case 1 � � � �
: When the inverter operates the motor for
forward rotation

� UL(00)= U(00) + UL(01) � �

� case 2 � � � �
: When the inverter operates the motor for
reverse rotation

� UL(00)= U(00) - UL(01) � �

� case else � � � � � : When the motor is stopped
� UL(00)= � � U(00) � �

� end select � � � � �

� YA(1)= � � UL(00) � �
: Output the data to an analog output (AM
terminal).

� goto LOOP � � � � �

� � � � � � � � �

�

�

�

Chapter 2 Syntax

2-45

PID-FB
Variable name Range of values Default Unit Data size Attribute

Process variable (PV), PID
feedback monitoring

0 to 9990000 0 0.01 %
Unsigned

2-word data
Readable

- Explanation
This variable can be used to monitor PID feedback data in the inverter. The data monitored with this variable corresponds to the
data monitored by the process variable (PV), PID feedback monitoring function (d004). This variable is read-only.

- Sample program: Program to stop inverter output when PID feedback data falls below the sleep level (to manage sleep status)
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

LOOP if PID-FB >= U(20) then LABEL1 : Compare the monitored data with the
sleep level.

� stop � � � � � : Stop inverter output.
� goto LABEL2 � � � � �

LABEL1 FW= 1 � � � �

LABEL2 goto LOOP � � � � �

� � � � � � � � �

�

(Data area [Data Window])
U(20) = 2000 : Set the PID sleep level of 20% in variable “U (20)”.

F-CNV
Variable name Range of values Default Unit Data size Attribute

Scaled output frequency
monitoring

0 to 3996000 - 0.01
Unsigned

2-word data
Readable

- Explanation
This variable can be used to monitor the converted output frequency of the inverter. The data monitored with this variable
corresponds to the data monitored by the scaled output frequency monitoring function (d007). This variable is read-only.

- Sample program : Program to output the motor speed data to a general-purpose analog output
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� UL(00)= � � F-CNV � � : Fetch the converted frequency data.
� UL(00)= UL(00) * 10000 � �

� UL(00)= UL(00) / 1800 � �

� YA(0)= � � UL(00) � � : Output the data to an analog output.
� � � � � � � �

�

(Parameter)
b086 = 30.0 : Assign the motor speed in Hz to frequency conversion factor variable “b086”.

Chapter 2 Syntax

2-46

Tmon
Variable name Range of values Default Unit Data size Attribute

Torque monitoring -200 to 200 - %
Unsigned

1-word data
Readable

- Explanation
This variable can be used to monitor output torque of the motor operated by the inverter. The data monitored with this variable
corresponds to the data monitored by the torque monitoring function (d012). This variable is read-only.
�

- Sample program : Program to increase the inverter output frequency when motor output torque is low (to automatically
accelerate the motor)

(Code area [Code Window])�
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

LOOP UL(00)= � � Tmon � � : Fetch the motor output torque data.
� U(10)= � abs UL(00) � � : Convert the data to an absolute value.

� if U(10) <= U(04) then LBL1 : When torque is 50% or less, change the
output frequency to 100 Hz.

� if U(10) <= U(03) then LBL2 : When torque is 60% or less, change the
output frequency to 80 Hz.

� if U(10) <= U(02) then LBL3 : When torque is 70% or less, change the
output frequency to 70 Hz.

� if U(10) <= U(01) then LBL4 : When torque is 80% or less, change the
output frequency to 65 Hz.

� if U(10) <= U(00) then LBL5 : When torque is 100% or less, change the
output frequency to 60 Hz.

� if U(10) > U(00) then LBL6 : When torque exceeds 100%, change the
output frequency to 60 Hz.

� goto LBL7 � � � � �

LBL1 SET-Freq= � � 10000 � � �

� goto LBL7 � � � � �

LBL2 SET-Freq= � � 8000 � � �

� goto LBL7 � � � � �

LBL3 SET-Freq= � � 7000 � � �

� goto LBL7 � � � � �

LBL4 SET-Freq= � � 6500 � � �

� goto LBL7 � � � � �

LBL5 SET-Freq= � � 6000 � � �

� goto LBL7 � � � � �

LBL6 SET-Freq= � � 6000 � � �

LBL7 goto LOOP � � � � �

� � � � � � � � �

(Data area [Data Window])
U (00) = 100 : Set torque of 100% in variable “U (00)”.
U (01) = 80 : Set torque of 80% in variable “U (01)”.
U (02) = 70 : Set torque of 70% in variable “U (02)”.
U (03) = 60 : Set torque of 60% in variable “U (03)”.
U (04) = 50 : Set torque of 50% in variable “U (04)”.

�

(Parameter)
A001 = 07
A004 = 100(Hz)

Chapter 2 Syntax

2-47

Vout
Variable name Range of values Default Unit Data size Attribute

Output voltage monitoring 0 to 6000 - 0.1 V
Unsigned

1-word data
Readable

- Explanation
This variable can be used to monitor the inverter output voltage. The data monitored with this variable corresponds to the data
monitored by the output voltage monitoring function (d013). This variable is read-only.

- Sample program : Program to turn a contact output on when output voltage exceeds 200 V
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
� � � � � � � �

LOOP if Vout >= U(00) then SKIP
� Y(00)= 1 � � �

SKIP goto LOOP � � � �

� � � � � � � �

�

(Data area [Data Window])
U (00) = 2000 : 200V

Power
Variable name Range of values Default Unit Data size Attribute

Power monitoring 0 to 9999 - 0.1 kW
Unsigned

1-word data
Readable

- Explanation
This variable can be used to monitor power input to the inverter. The data monitored with this variable corresponds to the data
monitored by the power monitoring function (d014). This variable is read-only.

- Sample program : Program to output a signal when input power is lower than the specified minimum limit or higher than the
specified maximum limit

(Code area [Code Window])�
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
� � � � � � � �

LOOP if Power < U(10) then LBL1
� if Power > U(11) then LBL2
� goto LBL3 � � � �

LBL1 Y(00)= 1 � � �

� goto LBL3 � � � �

LBL2 Y(02)= 1 � � �

LBL3 goto LOOP � � � �

� � � � � � � �

�

(Data area [Data Window])
U (10) = 55 : U (10) = 55: Set input power of 5.5 kW in variable “U (10)”.
U (11) = 110 : U (11) = 110: Set input power of 11 kW in variable “U (11)”.

Chapter 2 Syntax

2-48

PlsCnt
Variable name Range of values Default Unit Data size Attribute

Pulse count monitoring 0 to 32767 - 1
Unsigned

2-word data
Readable

- Explanation
This variable can be used to reference the pulse count when the pulse counter function is selected.
The data referenced with this variable corresponds to the data monitored by the pulse counter monitoring function (d028). This
variable is read-only.
This function doesn't correspond in the WJ200 Series.

- Sample program : This program turns on contact output when the pulse count exceeds 2000 (times).
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
� � � � � � � �

LOOP if PlsCnt >= U(00) then SKIP
� Y(00)= 1 � � �

SKIP goto LOOP � � � �

� � � � � � � �

�

(Data area [Data Window])
U (00) = 2000 : 2000(pulse)

POS

Variable name Range of values Default Unit Data size Attribute

current position
monitoring

268435455 to
-268435455

(1073741823 to
-1073741823)

- 1
Signed

2-word data
Readable

- Explanation
This variable can be used to reference current position information when the absolute position control function is selected.
The data referenced with this variable corresponds to the data monitored by the current position monitoring function (d030).
This variable is read-only.
When “03” (high-resolution absolute position control) has been selected for control pulse setting (P012), the parenthesized
range of values applies (Only SJ700).
This function doesn't correspond in the L700/SJ700B Series.

- Sample program : This program turns on contact output when the current position data exceeds 100,000 (pulses).
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
� � � � � � � �

� UL(00)= � � 100000 � �

LOOP if POS >= UL(00) then SKIP
� Y(00)= 1 � � �

SKIP goto LOOP � � � �

� � � � � � � �

Chapter 2 Syntax

STATUS
Variable name Range of values Default Unit Data size Attribute

Inverter status monitoring - - -
Unsigned

1-word data
Readable

- Explanation
This variable can be used to reference inverter status information.
The information to be referenced is defined as follows:

STATUS

bit0 : Run
bit1 : Trip
bit2 : Reserve
bit3 : Retry
bit4 : Overload suppression
bit5 : Overcurrent suppression
bit6 : Overvoltage suppression
bit7 : Reset
bit8 : Under voltage
bit9 to 15 : Reserve

- Sample program : This program keeps turning on contact output while overvoltage restraint is applied.
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� entry � � � � � �

LOOP U(00) = STATUS and U(01) � � �64 = b' 0100 0000(overvoltage restraint)
� ifs U(00) = U(01) � � �

� then � � � � � �

� Y(00)= 1 � � � �Y(00) ON
� else � � � � � �

� Y(00)= 0 � � � �Y(00) OFF
� end if � � � � � �

� goto LOOP � � � � �

� end � � � � � �

(Data area [Data Window])
U (01) = &B01000000

DCV
Variable name Range of values Default Unit Data size Attribute

DC voltage monitoring 0 to 9999 - 0.1V
Unsigned

1-word data
Readable

- Explanation
This variable can be used to reference the inverter DC voltage. The data referenced with this variable corresponds to the
data monitored by the DC voltage monitoring function (d102). This variable is read-only.

- Sample program : This program turns on contact output when the DC voltage exceeds 350 V.
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5
� � � � � � � �

LOOP if DCV >= U(00) then SKIP
� Y(00)= 1 � � �

SKIP goto LOOP � � � �

� � � � � � � �

�

(Data area [Data Window])
U(00) = 3500 $350.0V

2-49

Chapter 2 Syntax

2-50

RUN-Time
Variable name Range of values Default Unit Data size Attribute

Cumulative operation
RUN time monitoring

0 to 999999 - Hour
Unsigned

2-word data
Readable

- Explanation
This variable can be used to monitor the accumulated running time of the inverter. The data monitored with this variable
corresponds to the data monitored by the cumulative operation RUN time monitoring function (d016). This variable is read-only.

- Sample program : Program to output a one-second pulse signal indicating the running time of the inverter to a contact output
every hour�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

LOOP UL(01)= � � UL(00) � � : Set the previous data in variable "UL (01)".
� UL(00)= � � RUN-Time � � : Fetch the running-time data.
� if UL(00) = UL(01) then LBL1
� Y(00)= 1 � � � : Turn Y (00) on.
� delay off Y(00) TD(2) 100 � � : Turn Y (00) off after 1 second elapses.
LBL1 goto LOOP � � � � �

� � � � � � � � �

�

ON-Time
Variable name Range of values Default Unit Data size Attribute

Cumulative power-on time
monitoring

0 to 999999 - Hour
Unsigned

2-word data
Readable

- Explanation
This variable can be used to monitor the accumulated power-on time of the inverter. The data monitored with this variable
corresponds to the data monitored by the cumulative power-on time monitoring function (d017). This variable is read-only.

- Sample program : Program to convert the power-on time into a number of days and output the converted data as word data to
Y (00) to Y (05)�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� UL(00)= � � ON-Time � � : Fetch the power-on time data.
� UL(00)= UL(00) / 24 � � : Convert the data into a number of days.
� Yw= UL(00) and 31 � � : Output the data to Yw.
� � � � � � � � �

Chapter 2 Syntax

2-51

ERR CNT
Variable name Range of values Default Unit Data size Attribute

Trip counter 0 to 65535 -
Number
of times

Unsigned
1-word data

Readable

- Explanation
This variable can be used to monitor the number of times the inverter has tripped. The data monitored with this variable
corresponds to the data monitored by the trip counter function (d080). This variable is read-only.

- Sample program : Program to check whether the inverter has tripped more than 10,000 times�
Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� Yw= 0 � � � : Turn Y (00) to Y (05) off.

� UL(00)= � �
ERR
CNT � � : Fetch the trip count data.

� UL(01)= � � 100 � �

� If UL(00) < UL(01) then SKIP : When the trip count exceeds 100 (times).
� Y(00)= 1 � � � : turn Y (00) on.
� goto SKIP � � � �

SKIP Y(01)= 1 � � � : Turn Y (01) on when the process ends.
� � � � � � � � �

ERR (1) to
ERR (6)�

Variable name Range of values Default Unit Data size Attribute

Trip monitoring 1 to 6 0 to 127 - -
Unsigned

1-word data
Readable

- Explanation
These variables can be used to monitor the causes of the last six trips made by the inverter. The data monitored with this
variable corresponds to the data monitored by trip monitoring functions 1 to 6 (d081 to d086). These variables are read-only.

- Sample program : Program to check whether the last six trips include one caused by overcurrent
(Code area [Code Window])�

Label Mnemonic parameter1 parameter2 parameter3 parameter4 parameter5 �

� � � � � � � � �

� entry � � � � � �

� Yw= 0 � � � �

� if ERR(1) = U(00) then MATCH : Check the factor of the latest trip.

� if ERR(2) = U(00) then MATCH : Check the factor of the trip preceding the
latest.

� if ERR(3) = U(00) then MATCH : Check the factor of the trip two trips
before the latest.

� if ERR(4) = U(00) then MATCH : Check the factor of the trip three trips
before the latest.

� if ERR(5) = U(00) then MATCH : Check the factor of the trip four trips
before the latest.

� if ERR(6) = U(00) then MATCH : Check the factor of the trip five trips
before the latest.

� Y(00)= 0 � � � : Turn Y (00) off.
� goto SKIP � � � �

MATCH Y(00)= 1 � � � � : Turn Y (00) on.
SKIP Y(01)= 1 � � � � : Turn Y (01) on when the process ends.
� � � � � � � � �

(Data area [Data Window])
U (00) = 3 : Set “3” (E03) in variable “U (00)”. (Error code “E03” indicates a trip due to overcurrent.)

�

2-52

Chapter 2 Syntax

�

�

�

�

�

�

�

�

Chapter 3 Interface with the Inverter
�

�

This chapter explains the inverter settings to use the easy sequence function.
�

�

�

�

�

�

�

3.1 Inverter Settings··· 3-1

3.2 Switching of Operation ·· 3-3

3.3 Switching of Input / Output Terminals ······················ 3-3

3.4 Switching of Command Input Device······················· 3-8

3.5 Others ·· 3-9

Chapter 3 Interface with the Inverter

�

 Chapter 3 Interface with the Inverter

3.1 Inverter Settings
The following table lists the inverter settings related to the easy sequence function.
 (1)SJ700/L700/SJ700B Series

Category
Item Variable notation

in program
Related function

code
Variable/

terminal use condition Terminal name
Operation
switching

Selection of easy sequence function - A017 -

Input/
output
switching

Program run signal PRG(FW terminal) - A017
The PRG terminal is enabled when
A017 = 01.
(The FW function is disabled.)

General-purpose input
contacts (8 contacts)

Intelligent input
terminals 1 to 8

X (00) to X (07)
Xw

C001 to C008

Function code settings are required.
General-purpose output
contacts (6 contacts)

Intelligent output
terminals 11 to 15 Y (00) to Y (05)

Yw

C021 to C025

Intelligent relay output
terminals AL0 to AL2

C026

General-purpose analog
inputs (3 terminals)

O terminal XA (0) -
No setting is required. OI terminal XA (1) -

O2 terminal XA (2) -

General-purpose analog
outputs (3 terminals)

FM terminal YA (0) C027
Function code settings are required. AM terminal YA (1) C028

AMI terminal YA (2) C029

Command
switching

Frequency command selection SET-Freq A001
Related variables are valid only
when A001 = 07.

Operation command selection FW, RV
STA, STP, F/R

A002
Related variables are valid only
when A002 = 01.

Acceleration/deceleration input selection ACCEL,
DECEL

P031
Related variables are valid only
when P031 = 03.

Other User-defined variables (32 variables) U(00)%U(31) P100%P131
The variables can be redefined by
using the digital operator or EzSQ.

�

3-1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Eight digital output terminals

Three analog
output terminals

0 to 10V

3-phase power supply
(200 or 400 V)

Three analog
input terminals

PRG (setting unchangeable)

Selecting MI1�X (00)

FW

1

2

3

4

5

6

7

8

CM1

H

O

O2

OI

L

0 to 10V

4 to 20mA

XA (00)

XA (01)

XA (02)

CM2

11

12

13

14

15

AL0

AL1

AL2

CM1

FM

AM

AMI

L

Selecting MO1�Y (00)

Selecting YA0�YA (00)

Selecting YA1�YA (01)

Selecting YA2�YA (02)

I� M

Selecting MI2�X (01)

Selecting MI3�X (02)

Selecting MI4�X (03)

Selecting MI5�X (04)

Selecting MI6�X (05)

Selecting MI7�X (06)

Selecting MI8�X (07)

Selecting MO2�Y (01)

Selecting MO3�Y (02)

Selecting MO4�Y (03)

Selecting MO5�Y (04)

Selecting MO6�Y (05)

R

S

T

U

V

W

SJ700/L700/SJ700B Series

Five digital
output terminals

One relay
output terminal

Input and output terminals available for general-purpose input / output settings

 Chapter 3 Interface with the Inverter

�

(2)WJ200 Series ries

Category
Item &'�()*

+,-./0
+,12
345"6 -.789 :;<=

 Terminal name
Operation
switching

Selection of easy sequence function - A017 -

Input/
output
switching

Program run signal
PRG terminal

-
A017 = 01 The PRG terminal is enabled when

A017 = 01.

- A017 = 02 The user program always runs when
A017 = 02.

General-purpose input
contacts (8 contacts)

Intelligent input
terminals 1 to 7
EA terminal

X (00) to X (09)
Xw

C001 to C007
P003

Function code settings are required.
General-purpose output
contacts (3 contacts)

Intelligent output
terminals 11 to 12 Y (00) to Y (02)

Yw

C021 to C022

Intelligent relay output
terminals AL0 to AL2

C026

General-purpose analog
inputs (2 terminals)

O terminal XA (0) -
No setting is required.

OI terminal XA (1) -

General-purpose analog
outputs (2 terminals)

EO terminal YA (0) C027
Function code settings are required.

AM terminal YA (1) C028

Command
switching

Frequency command selection SET-Freq A001 / A201 Related variables are valid only when
A001 / A201 = 07.

Operation command selection FW, RV
STA, STP, F/R A002 / A202 Related variables are valid only when

A002 / A202 = 01.

Acceleration/deceleration input selection ACCEL
DECEL P031 Related variables are valid only when

P031 = 03.

Other User-defined variables (32 variables) U(00) to U(31) P100 to P131 The variables can be redefined by
using the digital operator or EzSQ.

��

3-2

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

1-phase power supply
(200 V)
3-phase power supply
(200 or 400 V)

Two analog
input terminals

EA terminal X (07)

Selecting MI1�X (00)

EA

1

2

3

4

5

6

7

L

H

O

OI

L

0 to 10V

4 to 20mA

XA (00)

XA (01)

XA (02)

CM2

11

12

AL0

AL1

AL2

L

EO

AM

L

Selecting MO1�Y (00)

Selecting YA0�YA (00)

Selecting YA1�YA (01)

I� M

Selecting MI2�X (01)

Selecting MI3�X (02)

Selecting MI4�X (03)

Selecting MI5�X (04)

Selecting MI6�X (05)

Selecting MI7�X (06)

Selecting MO2�Y (01)

Selecting MO3�Y (02)

R

S

T

U

V

W

WJ200 Series

Two digital
output terminals

One relay
output terminal

Input and output terminals available for general-purpose input / output settings

Eight digital output terminals

Two analog
output terminals

 Chapter 3 Interface with the Inverter

3-3

3.2 Switching of Operation

(1) Easy sequence function selection (A017)
To enable the easy sequence function, specify “01” (enabling) or “02” (always on) for the easy sequence function selection (A017).
(“02” cannot be selected by the SJ700/L700/SJ700B series.)
In the SJ700/L700/SJ700B Series, when the easy sequence function is enabled, the FW terminal is switched to the PRG terminal,
which is used to run the sequence program downloaded to the inverter. (The FW terminal does not function as the terminal to input the
forward-rotation command while the easy sequence function is operating.)�
�

(1) SJ700/L700/SJ700B Series
Function code Function name Setting Remarks

A017
Easy sequence
function selection

00 : Off (disabling)
01 : On (enabling)

�

(2) WJ200 Series
Function code Function name Setting Remarks

A017
Easy sequence
function selection

00 : Off (disabling)
01 : On (enabling)
02 : On (always)

�

�

3.3 Switching of Input / Output Terminals

(1) Program run signal input terminal (PRG terminal)
When A017 = 01, turning on the PRG terminal (FW terminal in SJ700/L700/SJ700B) runs the sequence program downloaded to the
inverter. When the PRG terminal is off, the inverter does not accept the operation command input via the RV terminal in the
SJ700/L700/SJ700B Series, but waits until the sequence program runs. If the PRG terminal is turned off while the sequence program
is running, the program stops. If the program is stopped while running the inverter, the inverter decelerates and stops.
�

(2) General-purpose contact input terminals
You can assign general-purpose input functions to the intelligent input terminals to use these terminals as general-purpose input
terminals for the easy sequence function. The table below lists the inverter terminal functions and program variables corresponding to
the terminal functions.�
When a general-purpose input function is assigned to an intelligent input terminal, the status of the terminal is reflected in the
corresponding program variables (X (**) or Xw).�
You can also assign functions other than general-purpose input function to the intelligent input terminals and operate the terminals for
those functions even while a sequence program is running. If both the easy sequence input and intelligent input functions have been
assigned to an intelligent input terminal, the terminal functions when either input is effective (i.e., both inputs are ORed).�
�

(1) SJ700/L700/SJ700B Series

Function code
Intelligent terminal

function
Program variable Remarks

Terminal [1] to [8] functions
(C001 to C008)

56 : MI1 X (00), Xw

Each terminal can operate for
easy sequence input and
intelligent input. (Both inputs
are ORed.)

57 : MI2 X (01), Xw
58 : MI3 X (02), Xw
59 : MI4 X (03), Xw
60 : MI5 X (04), Xw
61 : MI6 X (05), Xw
62 : MI7 X (06), Xw
63 : MI8 X (07), Xw

 Chapter 3 Interface with the Inverter

3-4

(2) WJ200 Series

Function code
Intelligent terminal

function
Program variable Remarks

Terminal [1] to [7] functions
(C001 to C007)

56 : MI1 X (00), Xw

Each terminal can operate for
easy sequence input and
intelligent input. (Both inputs
are ORed.)

57 : MI2 X (01), Xw
58 : MI3 X (02), Xw
59 : MI4 X (03), Xw
60 : MI5 X (04), Xw
61 : MI6 X (05), Xw
62 : MI7 X (06), Xw

EA terminal EA terminal X (07), Xw
Related variables are valid
only when P003 = 02.

> > X(08), X(09) Reserve

�

(3) General-purpose contact output terminals
You can assign general-purpose output functions to intelligent output terminals and the alarm relay terminal to use these terminals as
general-purpose output terminals for the easy sequence function. The table below lists the inverter terminal functions and program
variables corresponding to the terminal functions.
When a general-purpose output function is assigned to one of these output terminals, the data stored in variables “Y (**)” or “Yw” can
be output to the terminal.
You can also assign functions other than general-purpose output function to the output terminals and operate the terminals for those
functions even while a sequence program is running.�
�

(1) SJ700/L700/SJ700B Series�

Function code
Intelligent terminal

function
Program variable Remarks

Terminal [11] to [15]
functions (C021 to C025)

44 : MO1 Y (00), Yw

45 : MO2 Y (01), Yw
46 : MO3 Y (02), Yw
47 : MO4 Y (03), Yw
48 : MO5 Y (04), Yw

Alarm relay terminal
function (C026)

49 : MO6 Y (05), Yw

�

(2) WJ200 Series

Function code
Intelligent terminal

function
Program variable Remarks

Terminal [11] to [12]
functions (C021 to C022)

44 : MO1 Y (00), Yw �

45 : MO2 Y (01), Yw �

Alarm relay terminal
function (C026)�

46 : MO3 Y (02), Yw �

> > Y (03) to Y (05) Reserve
�

 Chapter 3 Interface with the Inverter

(4) General-purpose analog input terminal (O terminal)
You can use the O terminal as a general-purpose analog input terminal. By referencing the data stored in variable “XA (0)”, the data
(ranging from 0 to 10000) input via the O terminal can be fetched.
Switching the O terminal to a general-purpose analog input terminal does not require any special setting. Even when the O terminal is
used to input frequency commands, the O terminal can also function as a general-purpose analog input terminal. Note that the
handling of data fetched via the O terminal depends on the settings made by the [O]-[L] input functions (A011 to A015).
The figure below shows the relationship between the input voltage and the value to be fetched (when the settings of functions “A011” to
“A015” are the defaults).�
�

XA (0)

Input voltage (V) across
O and L terminals

10000

0 10
0

�

�

�

�

�

�

�

�

(5) General-purpose analog input terminal (OI terminal)
You can use the OI terminal as a general-purpose analog input terminal. By referencing the data stored in variable “XA (1)”, the data
(ranging from 0 to 10000) input via the O terminal can be fetched.
Switching the OI terminal to a general-purpose analog input terminal does not require any special setting. Even when the OI terminal is
used to input frequency commands, the OI terminal can also function as a general-purpose analog input terminal. Note that the
handling of data fetched via the OI terminal depends on the settings made by the [OI]-[L] input functions (A101 to A105).
The figure below shows the relationship between the input current and the value to be fetched (when the settings of functions “A101” to
“A105” are the defaults).�
�

XA (1)

Input current (mA) across
OI and L terminals

10000

0 20
0

4

�

�

�

�

�

�

�

�

�

(6) General-purpose analog input terminal (O2 terminal)
This terminal function is available for only SJ700/L700/SJ700B series. WJ200 series does not correspond.
You can use the O2 terminal as a general-purpose analog input terminal. By referencing the data stored in variable “XA (2)”, the data
(ranging from -10000 to 10000) input via the O2 terminal can be fetched.
Switching the O2 terminal to a general-purpose analog input terminal does not require any special setting. Even when the O2 terminal
is used to input frequency commands, the O2 terminal can also function as a general-purpose analog input terminal. Note that the
handling of data fetched via the O2 terminal depends on the settings made by the [O2]-[L] input functions (A111 to A115).
The figure below shows the relationship between the input voltage and the value to be fetched (when the settings of functions “A111” to
“A115” are the defaults).
� XA (2)

3-5

�

�

�

�

�

�

�

�

�

�

10000

-10000

100

Input voltage (V) across
O2 and L terminals

-10

 Chapter 3 Interface with the Inverter

(7) General-purpose analog output terminal

(FM terminal in SJ700/L700/SJ700B / EO terminal in WJ200)
You can use the FM terminal as a general-purpose analog output terminal for the easy sequence function. For this purpose, specify
“12” (YA0: general-purpose output 0) for the [FM] / [EO] signal selection (C027).
When used as a general-purpose analog output terminal, the FM / EO terminal can output the pulse signal that corresponds to the data
(0 to 10000) stored in variable “YA (0)”. The FM / EO output characteristics follow the FM / EO gain adjustment (C105). The figure
below shows the output waveform (with “C105” set to 100%).

Function code Function name Setting Remarks

C027

[FM] signal selection
(SJ700/L700/SJ700B) /

[EO] signal selection
(WJ200)

12 : General-purpose output 0
The analog output of program
variable (YA (0)) data is enabled
only when C027 = 12.

�

Always 6.4 ms

(YA (0) / 10000)×6.4 ms

Voltage across FM and CM1 /
EO and L terminals: 10 V

�

�

�

�

�

�

�

(8) General-purpose analog output terminal (AM terminal)
You can use the AM terminal as a general-purpose analog output terminal for the easy sequence function. For this purpose, specify
“13” (YA1: general-purpose output 1) for the [AM] signal selection (C028).
When used as a general-purpose analog output terminal, the AM terminal can output the data (0 to 10000) stored in variable “YA (1)”.
The AM output characteristics follow the AM gain adjustment (C106) and AM bias adjustment (C109). The figure below shows the
relationship between the value of variable “YA (1)” and AM output voltage (with “C106” set to 100% and "C109" set to 0%).
�

Function code Function name Setting Remarks

C028 [AM] signal selection 13 : General-purpose output 1
The analog output of program
variable (YA (1)) data is enabled
only when C028 = 13.

�

YA (1)

Output voltage (V) across
AM and L terminals

100000

10

0

�

�

�

�

�

�

�

�

�

3-6

 Chapter 3 Interface with the Inverter

(9) General-purpose analog output terminal (AMI terminal)
This terminal function is available for only SJ700/L700/SJ700B series. WJ200 series does not correspond.
You can use the AMI terminal as a general-purpose analog output terminal for the easy sequence function. For this purpose, specify
“14” (YA2: general-purpose output 2) for the [AMI] signal selection (C029).
When used as a general-purpose analog output terminal, the AMI terminal can output the data (0 to 10000) stored in variable “YA (2)”.
The AMI output characteristics follow the AMI gain adjustment (C107) and AMI bias adjustment (C110). The figure below shows the
relationship between the values of variable “YA (2)” and AMI output voltage (with “C107” set to 100% and “C110” set to 0%).
�

Function code Function name Setting Remarks

C029 [AMI] signal selection 14 : General-purpose output 2
The analog output of program
variable (YA (2)) data is enabled
only when C029 = 14.

�

4

YA (2)

Output current (mA) across AMI
and L terminals

100000

20

0

�

�

�

�

�

�

�

3-7

 Chapter 3 Interface with the Inverter

3-8

3.4 Switching of Command Input Device

(1) Frequency source setting (A001 / A201)
Selection of the device used to input frequency commands follows the frequency source setting (A001 / A201), regardless of whether
the easy sequence function is enabled.
EzSQ provides variable “SET-Freq” for setting the inverter output frequency. To enable the use of this variable, specify “07” (PRG) for
the frequency source setting (A001 / A201). Otherwise, the frequency setting in “SET-Freq” will not be reflected in the inverter.
A201 is available for only WJ200 series. SJ700, L700 and SJ700B series do not correspond.
�

Function code Function name Setting Remarks

A001 / A201
Frequency source

setting
07 : PRG (easy sequence)

The use of program variable
(SET-Freq) data is enabled only
when A001 / A201 = 07.

�

�

(2) Run command source setting (A002 / A202)
Selection of the device used to input operation commands follows the run command source setting (A002 / A202), regardless of
whether the easy sequence function is enabled.
EzSQ provides variables “FW”, “RV”, “STA”, “STP”, and “F/R” for the inverter control related to operation commands. Since these
variables are handled as terminal input data, specify “01” (TRM) for the run command source setting (A002 / A202) to enable the use of
the variables.
A202 is available for only WJ200 series. SJ700, L700 and SJ700B series do not correspond.
�

Function code Function name Setting Remarks

A002 / A202
Run command source

setting
01 : TRM
 (control circuit terminal block)

The use of program variables
“FW”, “RV”, “STA”, “STP”,
and “F/R” is enabled only when
A002 / A202 = 01.

�

�

(3) Accel / decel time input selection (P031)
Selection of the device used to input acceleration/deceleration time settings follows the setting of accel / decel time input selection
(P031), regardless of whether the easy sequence function is enabled.
EzSQ provides variables “ACCEL” and “DECEL” for the inverter control related to acceleration and deceleration time. To enable the
use of these variable, specify “03” (PRG) for the accel / decel time input selection (P031). Otherwise, the acceleration/deceleration time
settings in “ACCEL” and “DECEL” will not be reflected in the inverter.
�

Function code Function name Setting Remarks

P031
Accel / decel time input

selection 03 : PRG (easy sequence)
The use of program variables
"ACCEL" and "DECEL" is
enabled only when P031 = 03.

�

 Chapter 3 Interface with the Inverter

3-9

3.5 Others

(1) User-defined variables “U (00)” to “U (31)” (P100 to P131)
The easy sequence function provides 32 user-defined variables “U (00)” to “U (31)”, which correspond to inverter parameters “P100” to
“P131”. You can use the “Data Window” of EzSQ to set data in these variables, and store them as inverter parameters “P100” to
“P131” by downloading the program containing the variables to the inverter. After downloading the program, you can update the
parameter data by accessing parameters “P100” to “P131” from the digital operator connected to the inverter without using EzSQ.
�

Function code Function name Setting Remarks

P100 to P131
User-defined variables

U (00) to U (31)
0 to 65535 (to be defined by user)

Updateable via digital operator
or EzSQ

�

(2) User monitor “Umon (00)” to “Umon (02)” (d025 to d027)
You can carry out the monitor display of the arbitrary data in a program to the digital operator connected to the inverter.
These variables can be used as signed 2-word variables. The data of UL (ii) can be displayed as it is.
�

Function code Function name Setting Remarks
d025 to d027 User monitor 0 to 2 -2147483647%2147483647

�

(3) User trip “trip 0” to “trip 9” (Error code E50 to E59)
This instruction makes inverter trip.�
The error codes are E50 to E59. It corresponds to “trip 0” to “trip 9” respectively.

3-10

Chapter 3 Interface with the Inverter

�

�

�

�

�

�

�

�

�

Chapter 4 Errors and Troubleshooting
�

�

This chapter explains the errors that may occur when using the easy sequence
function and the methods of handling the errors.
�

�

�

�

�

�

4.1 Errors Specific to the Easy Sequence Function ······ 4-1

4.2 Troubleshooting ··· 4-2

Chapter 4 Errors and Troubleshooting

�

 Chapter 4 Errors and Troubleshooting

4-1

4.1 Errors Specific to the Easy Sequence Function
The table below lists the errors that are specific to the easy sequence function. For other errors in the inverter, refer to
the SJ700 Series Inverter Instruction Manual.
�

No.
Error (causing
inverter trip)

Factor code
(*1)

Description

1 Invalid instruction E43.*

The inverter assumes an error if you try to download the program that
exceeds capacity, and all programs are not downloaded, or if the
downloaded program includes an invalid instruction code. This error is
detected if the PRG terminal is turned on when the downloaded program
has been destroyed or no program has been downloaded.

2 Nesting count error E44.*
The inverter assumes an error if subroutines, for statements, and/or next
statements are nested in more than eight layers.

3 Instruction error 1 E45.*

- The inverter assumes an error if the jump destination of a goto
statement is not the beginning of a nested for statement but preceded
by the end of a nested next statement.

- The inverter assumes an error if the variable “U (xx)” referenced via
another variable is not found.

- The inverter assumes an error if an arithmetic instruction results in
overflow or underflow (WJ200 Step2 is excluded.), or causes a
division by zero.

- The inverter assumes an error if a chg param instruction causes
reference to a nonexistent parameter, change of a parameter value
outside the setting limits, or updating of a parameter that cannot be
updated during inverter operation.

4 User trip 0 to 9
E50.* to

E59.*
�

1 The asterisk () in the factor code represents an inverter status code.
�

�

4-2

Chapter 4 Errors and Troubleshooting

4.2 Troubleshooting
The table below shows how to handle the errors specific to the easy sequence function. For details on other errors in the
inverter, refer to the inverter instruction manual.
�

Factor
code

Error (causing
inverter trip)

Possible cause Checking method Corrective action

E43
Invalid
instruction

The PRG terminal was
turned on without a program
downloaded to the inverter.

Upload the program from
the inverter to the personal
computer, and check
whether the uploaded
program matches one of the
programs stored on the
personal computer.

Recreate the program, and
then download it to the
inverter. The program stored in

inverter memory has been
destroyed.

E44
Nesting count
error

Subroutines are nested in
more than eight layers.

Read the program to check
the number of nesting
layers.

Correct the program so that
the number of layers will be
eight or less.

for-next loop statements are
nested in more than eight
layers.
if statements are nested in
more than eight layers.

E45
Instruction
error 1

The jump destination of a
goto instruction is a next
instruction to end a for or
other loop.

Check whether each goto
instruction jumps to an
instruction that ends a loop.

Correct the jump
destinations of goto
instructions.

The variable “U (ii)”
referenced via another
variable is not found.

Check the numerical value
specified in “U (ii)”.

Correct the value of variable
“U (ii)” or limit the range of
values of variable “U (ii)”.

An arithmetic instruction
caused:
- overflow,
- underflow, or
- division by zero.

Check the program for the
instruction causing overflow,
underflow, or division by
zero.

Correct the program so that
no arithmetic instruction
causes overflow, underflow,
or division by zero.

A chg param instruction
caused:
- reference to a nonexistent

parameter,
- writing of a value out of the

setting range,
- change of a parameter

value (during inverter
operation) that cannot be
updated during inverter
operation, or

- change of a parameter
value of which updating is
restricted by software lock
(when software lock is
enabled).

- Check the parameters
and the values to be
written.

- If the error has occurred
during inverter operation,
check whether the
parameter in question is
the one that can be
updated during inverter
operation. (*1)

- Check the setting of
software lock selection
(b031). (*1)

- Correct the parameters or
the values to be written to
parameters so that they
will be within the setting
range.

- Disable software lock. (*2)
- If the parameter to be

updated is the one that
cannot be updated during
inverter operation, change
the setting of software
lock selection (b031) to
“10” to switch to the mode
enabling parameter
updating during inverter
operation. (*2)

�

*1 For details, refer to the inverter instruction manual.
*2 The settings of some parameters affect inverter output and the functions of input/output terminals. Changing the

settings of said parameters during inverter operation may entail the risk of abnormal operation of the motor or
machine driven by the inverter. If you change the setting of a parameter after disabling the software lock or switching
to the mode enabling parameter updating during inverter operation, check the influence of the update beforehand to
ensure the safety of system operation.

�

