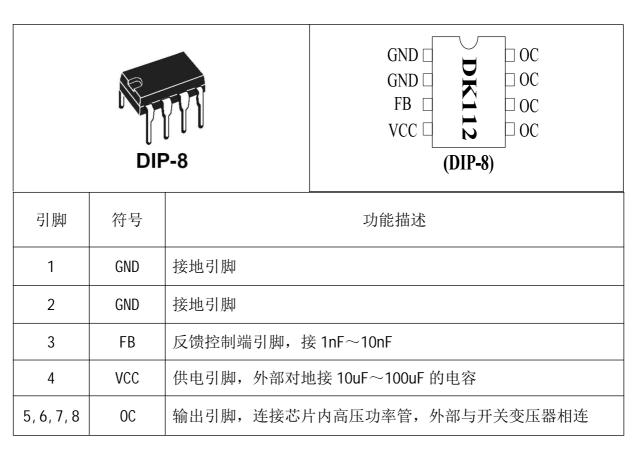
功能描述

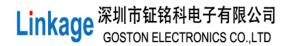

DK112 是次级反馈,反激式 AC-DC 离线式开关电源控制芯片。芯片采用高集成度的 CMOS 电路设计,具有输出短路、次级开路、过温、过压等保护功能。芯片内置高压功率 管和自供电线路,具有外围元件极少,变压器设计简单(隔离输出电路的变压器只需要两个绕组)等特点。

产品特点


- 全电压输入85V-265V。
- 内置 700V 功率管。
- 芯片内集成了高压恒流启动电路,无需外部启动电阻。
- 专利的自供电技术,无需外部绕组供电。
- Ⅰ 待机功耗小于 0.3W。
- 65KHz PWM 开关频率。
- Ⅰ 内置变频功能, 待机时自动降低工作频率, 在满足欧洲绿色能源标准(< 0.3W) 同时, 降低了输出电压的纹波。
- 内置斜坡补偿电路,保证在低电压及大功率输出时的电路稳定。
- Ⅰ 频率抖动降低 EMI 滤波成本。
- 过温、过流、过压以及输出短路,次级开路保护。
- 4KV 防静电 ESD 测试。

应用领域

12W 以下 AC-DC 应用包括:电源适配器、充电器、LED 电源、电磁炉、空调、DVD、机顶盒等家电产品。



封装与引脚定义(DIP8)

极限参数

供电电压 VDD	-0.3V8V
供电电流 VDD	100mA
引脚电压0.3VV	/DD+0.3V
功率管耐压	.3V730V
峰值电流	800mA
总耗散功率	1000mW
工作温度25°C	C+125°C
储存温度	C+150°C
焊接温度 +2	280° C/5S

电气参数

项目	测试条件	最小	典型	最大	单位
工作电压VCC	AC 输入85V265V		4.7		V
VCC启动电压	AC 输入85V265V		4. 9		V
VCC重启电压	AC 输入85V265V		3.4		V
VCC保护电压	AC 输入85V265V		5.8		V
VCC工作电流	VCC=4.7V, FB=2.2V	10	20	30	mA
高压启动电流	AC 输入265V			1.2	mA
启动时间	AC 输入85V, C=100uF			500	ms
功率管耐压	loc=1mA	700			V
0C保护电压	Lp=1.2mH		610		V
功率管最大电流	VCC=4.7V, FB=1.3v3.0V,	600	660	700	mA
峰值电流保护	VCC=4.7V, FB=1.3v—3.0v	650	720	800	mA
PWM输出频率	VCC=4.7V, FB=1.6V3.0V	50	65	70	Khz
PWM输出频率	VCC=4.7V, FB=1.3V1.6V		20		Khz
温度保护	VCC=5V, FB=1.6v—3.6v	120	125	130	$^{\circ}$
前沿消隐时间	VCC=4.7V		250		ns
最小开通时间	VCC=4.7V		500		ns
PWM占空比	VCC=4.7V, FB=1.6v—3.6v	5		75	%
待机功耗				270	mW

工作原理

上电启动:

芯片内置高压启动电流源;上电启动时当 VDD 电压小于启动电压时,打开三极管对外部的 VDD 储能电容充电。当 VDD 电压达到 4.9V 启动电压的时候,关闭启动电流源,启动过程结束,控制逻辑开始输出 PWM 脉冲。

软启动:

上电启动结束后,为防止输出电压建立过程可能产生的变压器磁芯饱和,功率管和次级整流管应力过大,芯片内置 4ms 软启动电路,在前 4ms 内,最大初级峰值电流为330mA,时钟频率为65K。启动结束后,最大初级峰值电流为660mA,时钟频率为65K。

PWM 输出:

一个 PWM 周期由 3 部分组成: 1 是电感充电(开关管开通)阶段, $T_1 = \frac{L_p * I_p}{V_{in}}$; 2 是电感放电阶段(开关管关闭) $T_2 = \frac{L_p * I_p}{V_{vor}}$, 3 为 0C 谐振阶段, 谐振周期为: $T = 2p\sqrt{L_p * C_{oc}}$ 。 芯片 65K 定频输出方式,开通时间由 FB 反馈电压控制。

FB 检测和反馈控制:

Fb 引脚外部连接一只电容,以平滑 Fb 电压,外接电容会影响到电路的反馈瞬态特性及电路的稳定工作,典型应用可在 1nF~10nF 之间选择;

当 Fb 电压低于 1.6V, 最大 Ip 电流为 660mA;

当 Fb 电压从 1.6V 逐渐上升到 2.8V 时,Ip 电流从最大电流 660mA 逐渐减小到 $I_P = \frac{T_1 * V_{in}}{L_P}$, $T_1 \min$ =500ns。

当 Fb 电压高于 1.6V 到 2.8V, 工作频率固定为 65kHz。

当 Fb 电压从 2.8V 到 3.6V 时, 随 FB 电压升高工作频率逐渐降低。

当 Fb 电压大于 3.6V 时, 电路将停止 PWM 输出。

自供电:

芯片使用了专利的自供电技术,控制 VDD 的电压在 4.7V 左右,提供芯片本身的电流消耗,无需外部辅助绕组提供。自供电电路只能提供芯片自身的电流消耗,不能为外部线路提供能量。

过温保护:

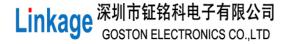
任何时候检测到芯片温度超过 125℃,立即启动过温保护,停止输出脉冲,关断功率管并进入异常保护模式。

初级短路保护:

外部变压器初级线圈的电流过大时,软启动结束后,如果在 PWM 开通 500ns 时检测到初级线圈的电流达到 660mA,芯片立即关断功率管,进入异常保护模式。

电源异常:

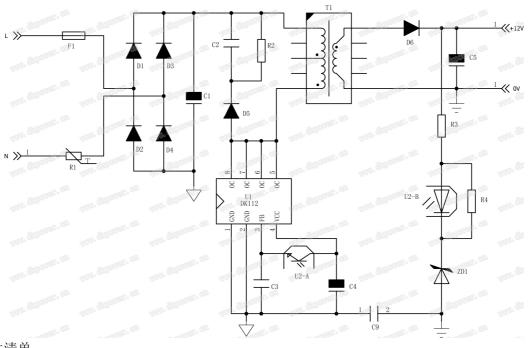
因外部异常导致 VCC 电压低于 3.4V 时, 芯片将关断功率管, 进行重新启动。


因外部异常导致 VCC 电压高于 5.8V 时,立即启动 VCC 过压保护,停止输出脉冲并进入异常保护模式。

短路和过载保护:

次级输出短路或者过载时,FB 电压会低于 1.5v; 在某些应用中,由于电机等感性负载在启动时会需要较高的启动电流,可能导致电路短时间的过载,因此芯片第一次过载保护的判定时间是 500ms。如果 FB 电压在 500ms 内恢复正常,芯片不会判定过载或短路;如果 FB 电压在 500ms 内始终低于 1.5v,则判定为次级短路,立即关闭 PWM 输出并进入异常保护模式,并将短路保护判定时间缩短为 32ms,直到短路状况解除。

次级开路保护:


当检测到 OC 电压>610V, 立即关闭 PWM 输出并进入待机模式, 直到 OC 电压<610V。

异常保护模式:

芯片进入异常保护模式后(stop=1),关闭 PWM 输出,启动 500ms 定时器。在 500ms 内,VCC 电压下降并维持 4.6V,500ms 后,芯片结束异常状态。

典型应用(12V1A 输出离线反激式开关电源)

元器件清单

70冊川刊十					
序号	元件名称	规格/型号	位号	数量	备注
1	保险丝	F1A/AC250V	F1	1	
2	NTC	5D-5	R1	1	F1用保险电阻R1可直接短路
2	整流二极管	1N4007	D1-D4	4	
3	— 17 7 公本	FR107	D5	1	
4	二极管	SR5100	D6	1	
5	稳压管	11V	ZD1	1	稳压精度最好用2%的
		22uF/400V	C1	1	
6	电解电容	22uF/50V	C4	1	
		1000uF/25V	C5	1	
		2G103J	C2	1	
8	8 瓷片电容	103瓷片	C3	1	
		Y电容102	С9	1	
8	瓷片电容	2G103J 103瓷片	C2 C3	1	

Linkage 深圳市钲铭科电子有限公司 GOSTON ELECTRONICS CO.,LTD

DK112 离线式开关电源控制芯片

序号	元件名称	规格/型号	位号	数量	备注
		100K/0.5W	R2	1	
9	色环电阻	470R	R3	1	阻值减小电压下降, 反之上升
		2. 2K	R4	1	可不用,加大降低电压。
10	IC	DK112	IC1	1	
11	IC	EL817	IC2	1	
12	变压器	EE19 Lp=1.1-1.2mH	T1	1	NP 0.23mm*129T Ns0.5*20T

变压器设计 (只作参考)

变压器设计时,需要先确定一些参数:

(1) 输入电压范围 AC85~265V

(2) 输出电压、电流 DC12V/1A

(3) 开关频率 F=65KHz

1、磁芯的选择:

先计算出电源的输入功率 $Pi = \frac{Po}{h}$ *1.1(h指开关电源的效率,设为 0.82, 1.1 为增

加 10%余量)

$$Pi = \frac{Po}{h} *1.1=13.2 \text{W/} 0.82=16 \text{W},$$

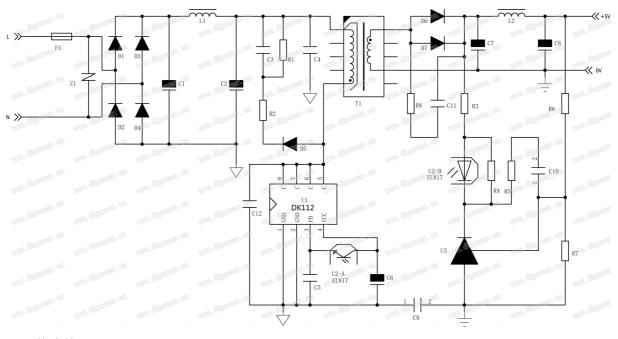
通过磁芯的制造商提供的图表进行选择,也可通过计算方式选择,输入功率为 16W 时,电源可用 EE19 磁心。

2、变压器初级线圈感量 Lp 计算, 芯片内峰值电流设置为 660mA, 因此

$$Lp = \frac{2*Pi}{lp*lp*Fs} = \frac{2*16W}{0.66A*0.66A*65k} = 1.13mH$$

3、计算原边匝数 Np:

注:如需最新资料或技术支持,请与我们联系


其中:

4、计算副边匝数 Ns:

Vout ----输出电压(包含线路压降及整流管压降, 12V+0.6V=12.6V)

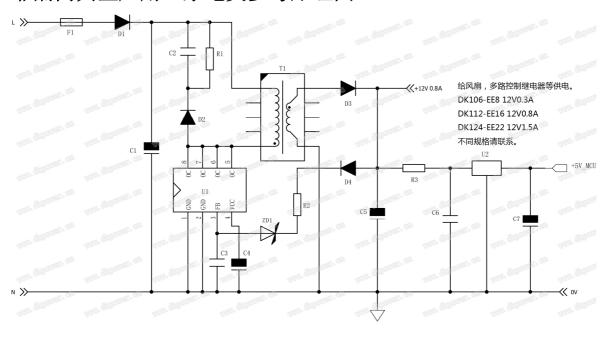
Ns=(Vout*Np)/Vor=(12.6*129)/80 ≈ 20 匝(板端电压标准 12V)/21 匝(板端电压偏高 12.3V)

典型应用(5V2A 认证参考原理图)

元器件清单

序号	元件名称	规格/型号	位号	数量	备注
1	保险丝	T2A/AC250V	F1	1	
2	压敏电阻	7D471	Z1	1	
3	二极管	1N4007	D1-4	4	
4	二极管	1N4007	D5	1	
5	二极管	SR540	D6, D7	2	
6	电解电容	10uF/400V	C1, C2	2	
7	电解电容	22uF/50V	C6	1	
8	电解电容	1000uF/10V	C7,8	2	

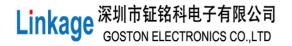
Linkage 深圳市钲铭科电子有限公司 GOSTON ELECTRONICS CO.,LTD


DK112 离线式开关电源控制芯片

序号	元件名称	规格/型号	位号	数量	备注
9	工字型电感	2mH 0.25A	L1	1	
10	工字型电感	4. 7uH 2A	L2	1	
11	涤沦电容	2G103J	C3	1	
12	瓷片电容	103 50V	C5	1	
13	瓷片电容	104 50V	C10	1	
14	高压电容	102 1KV	C11	1	根据余量要求可适当删减
15	高压电容	47pF 1KV	C12	1	根据余量要求可适当删减
16	高压电容	102 1KV	C4	1	根据余量要求可适当删减
17	Y电容	222	С9	1	
18	电阻	100K 0.25W	R1	1	
19	电阻	47R 0.25W	R2	1	
20	电阻	22R 0.25W	R8	1	
21	电阻	470R 1/6W	R3	1	
22	电阻	3.3K 1/6W	R4	1	
23	电阻	5.1K 1/6W	R5	1	
24	电阻	10K 1/6W	R6	1	
25	电阻	9.1K 1/6W	R7	1	
26	IC	DK112	U1	1	
27	光耦	EL817	U2	1	
28	IC	TL431	U3	1	
29	变压器	EE19	T1	1	Lp=1.1mH, Np=127T*0.23mm(夹心 绕法)线密绕3层,加2层线屏蔽 接地或者HV,Ns=10T*0.65mm三层 绝缘线,飞线

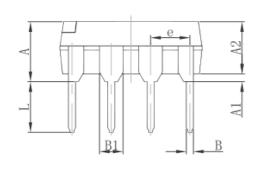
对音像视频类产品,因其特殊性,建议使用共模电感进行EMC/I滤波设计;对雷击要求较高耐压的请注意安全距离的设计。

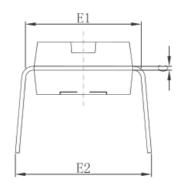
非隔离典型应用(家电类参考原理图)

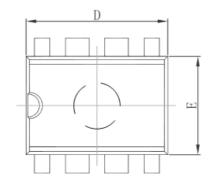

序号	元件名称	规格/型号	位号	数量	备注	
1	保险丝	T2A/AC250V	F1	1		
2	二极管	1N4007	D1	1		
3	二极管	FR107	D2	1		
4	二极管	SR3100	D3	1		
5	二极管	1N4148	D4	1		
6	稳压二极管	9.1V 0.5W	ZD1	1		
7	电解电容	15uF/400V	C1	1		
8	电解电容	22uF/50V	C4,7	2		
9	电解电容	680uF/16V	C5	1		
10	涤沦电容	2G103J	C2	1		
11	瓷片电容	103 50V	C3	1		
12	瓷片电容	104 50V	C6	1		
13	电阻	100K 0.25W	R1	1		
14	电阻	47R 0.25W	R2	1		
15	电阻	10K 1/6W	R3	1		
16	IC	DK112	U1	1		
17	' IC HT7500(HT7500-1) U1	IC HT7500(HT7500-1) U1 1	IC HT7500(HT7500-1) U1 1	111	1	不带AD(带AD)不用5V供电时从
17				10 117300(117300 1) 01 1	10 117300(117300 1) 01 1	117300(117300-1)
18	变压器	亦工盟 「「14	T1	T1 1	Lp=850uH NP=0.23*110T	
10	18	'	Ns=0. 45*23T			

设计注意事项

- 1、功率器件是需要散热的,芯片的主要热量来自功率开关管,功率开关管与引脚 0C 相连接,所以在 PCB 布线时,应该将引脚 0C 外接的铜箔的面积加大并作镀锡处理,以增大散热能力,适当的和变压器等发热元件拉开距离,减小热效应;同时这个部分也是交流信号部分,在 EMI/EMC 设计时这个位置尽量远离输入部分,如上图的 L1 左边部分电路,尽量减小电磁/电容耦合。
- 2、芯片的 0C 引脚是芯片的高压部份,最高电压可达 600V 以上,所以在线路布置上要与低压部份保证 1.5mm 以上的安全距离,以免电路出现击穿放电现象。

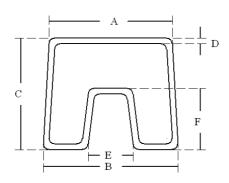

3、变压器的漏感


由于变压器不是理想器件,在制造过程中一定会存在漏感,漏感会影响到产品的稳定及安全,所以要减小,漏电感应控制在电感量的5%以内,三明治绕线方式可以减小漏感。



封装尺寸(DIP8)

OL - I	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	3. 710	4. 310	0. 146	0. 170
A1	0. 510		0. 020	101 000
A2	3. 200	3. 600	0. 126	0. 142
В	0. 380	0. 570	0.015	0.022
B1	1. 52	4 (BSC)	0.060	(BSC)
C	0. 204	0. 360	0.008	0.014
D	9. 000	9. 400	0. 354	0.370
E	6. 200	6. 600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0.312
е	2. 54	O (BSC)	0. 100	(BSC)
L	3. 000	3. 600	0. 118	0.142
E2	8. 400	9. 200	0. 331	0. 354



包装信息

芯片采用防静电管包装。

代	最小值	额定值	最大值
号	(mm)	(mm)	(mm)
A	11	11. 5	12
В	11. 5	12	12.5
С	10	10. 5	11
D	0.4	0. 5	0.6
E	3. 5	4	4.5
F	5	5. 5	6

12.2、包装数量

包装	数量
单管	50
单包装箱	2000
大包装箱	20000