ЭЛЕКТРОДВИГАТЕЛИ СЕРИИ BSM

1. Общие сведения

Электродвигатели BSM по конструкции представляют собой трехфазные синхронные машины фланцевого крепления с возбуждением от постоянных редкоземельных магнитов на роторе.

Электродвигатели BSM имеют встроенный фотоэлектрический датчик положения ротора, температурный датчик перегрева обмотки статора и исполнение со встроенным электромагнитным стояночным тормозом.

Электродвигатели предназначены для работы без внешней вентиляции и имеют очень высокую перегрузочную способность.

Электропривод переменного тока состоит из преобразователя серии BSD, аппаратуры управления (коммутационной и защитной аппаратуры) и электродвигателя серии BSM.

Электропривод применяется в быстродействующих механизмах подачи металлообрабатывающих станков, в том числе с числовым программным управлением, в исполнительных механизмах промышленных роботов, механизмах гибких производственных систем и других механизмах следящих систем, которые требуют точных перемещений и регулирования скорости вращения в широком диапазоне.

Наименование двигателя состоит из следующих структурных элементов:

- Наименование
- Номинальный момент, развиваемым двигателем и номинальная частота вращения двигателя
- Указание о наличии стояночного тормоза
- Конструктивное исполнение и указание размера диаметра центров отверстий на крепительном фланце двигателя

Пример наименования электродвигателя:

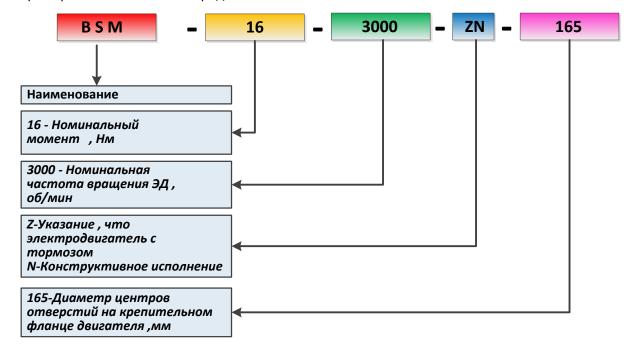


Таблица 1.1

Параметр	Наименование электродвигателя											
	BSM-xx-xxxx-N-165		BSM-xx-xxxx-N-215		BSM-xx-xxxx-N-215		BSM-xx-xxxx-N-215		BSM-xx-xxxx-N-215			
Номинальный момент (Мном), Нм	18.9	16.8	23.5	22.4	20	32	30.4	26.6	42	40.0	52	50.5
Номинальная частота вращения	2000	3000	1500	2000	3000	1500	2000	3000	1500	2000	1500	2000
(Nном), об/мин												
Номинальный ток (Іном), А	8	11.6	7.6	8.9	12.9	10.9	13.5	18.2	14.8	17.8	19.5	20.5
Номинальная мощность (Рном), кВт	4	5.3	3.69	4.7	6.3	5.0	6.4	8.4	6.6	8.4	8.16	10.6
Номинальная частота напряжения	100	150	75	100	150	75	100	150	75	100	75	100
(Fном), Гц												
Нулевой момент (М0), Нм	21 28 38		50		63							
Нулевой ток (ІО), А	8.9	14.5	8.9	11.1	18.1	12.6	16.8	26	17	22.2	23	25.6
Максимальный момент (Ммакс), Нм	84	84 100 125			150		175					
Максимальная частота вращения	2500	3900	1850	2600	3850	1850	2600	3850	1850	2600	1850	2600
(Ммакс), об/мин												
Максимальный ток (Імакс), А	40	64	36	43.5	80.0	46.8	60.5	94	58	73.5	71	78.5
Максимальная мощность (Рмакс), кВт	8.7	13	7.5	10	15	10	13	19	13.2	15	16	18
Постоянная момента (Кт), Нм/А	2.35	1.45	3.15	2.52	1.55	3.04	2.26	1.46	2.25	1.55	2.75	2.46
Постоянная противо-ЭДС (Ке), В/1000	145	92	200	154	94.2	194	142	89	188	142	177	147
об/мин												
Активное сопротивление фазы	1.70	0.75	2.02	1.18	0.46	1.07	0.58	0.22	0.69	0.39	0.44	0.31
статора (Rф), Ом												
Момента инерции ротора (без	52.4		89.1		130.8		172.4		214.0			
тормоза), кг*м²*10 ⁻⁴												
Масса (без тормоза), кг	18		21.5		29		33.5		43.5			
Масса (с тормозом), кг	20.9		31.5		39		43.5		53.5			

Для справки. В таблице 1.1 определяются следующие параметры электродвигателей в соответствии ГОСТ IEC 60034-1-2014 (IEC 60034-1:2010, ЮТ) и ГОСТ Р МЭК 60034-4-2012:

- номинальное значение (rated value): Числовое значение параметра, установленное обычно изготовителем для согласованных условий эксплуатации машины (длительный режим S1).
- номинальная мощность двигателей механическая мощность на валу, выраженная в ваттах (Вт).
- нулевой момент (ток) синхронного двигателя: наибольший длительный (режим S1) вращающий момент (ток), развиваемый синхронным двигателем при скорости равной нулю (режим силового удержания).
- максимальный момент (ток, мощность) синхронного двигателя (pull-out torque of a synchronous motor): Наибольший вращающий момент (ток, мощность), развиваемый синхронным двигателем при синхронной частоте вращения и при номинальных значениях напряжения, частоты питания и тока возбуждения.
- активное сопротивление обмотки якоря (armature resistance): Сопротивление между выводами обмотки якоря, измеренное при постоянном токе, отнесенное к определенной температуре обмотки и выраженное в фазных величинах.
- постоянная момента (Кт): Коэффициент пропорциональности между вращающим моментом, развиваемым синхронным двигателем и активным среднеквадратичным моментообразующим током (Iq), подводимым к двигателю.
- постоянная противо-ЭДС (Ke): Коэффициент пропорциональности между среднеквадратичным линейным напряжением противо-ЭДС в обмотке статора и частоты вращения ротора.
- момент инерции (moment of inertia): Интегральная сумма произведений массы отдельных частей тела на квадраты расстояний (радиусов) их центров тяжести от заданной оси.

2. Габаритные и установочные размеры электродвигателя серии BSM

Все чертежи представлены в приложении 1.

3. Сигналы на разъёмах электродвигателя серии BSM

В электродвигателях серии **BSM** используются круглые разъёмы: блочные вилки **HMS3102A** и угловые кабельные розетки **HMS3057**.

3.1. Разъём питания

Электродвигатели серии **BSM** в зависимости от типоразмера имеют разные разъёмы питания. Блочные вилки **HMS3102A 18-10S** и **HMS3102A 22-22S** имеют одинаковое число и маркировку контактов, но отличаются по диаметру контактов. Расположение контактов разъёма питания электродвигателя показано на рисунке 3.1.1. Сигналы разъёма питания **HMS3102A 18-10S/HMS3102A 22-22S** указаны в таблице 3.1.1.

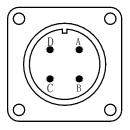


Рисунок 3.1.1 - Расположение контактов разъёма питания электродвигателя серии BSM HMS3102A 18-10S/HMS3102A 22-22S

Таблица 3.1.1 - Сигналы разъёма питания электродвигателя HMS3102A 18-10S/HMS3102A 22-22S

Контакт	Сигнал	Наименование	Контакт	Сигнал	Наименование
В	U	Питание трёхфазной	А	PE	Защитное заземление
С	V	обмотки статора электродвигателя (фаза U,			
D	W	фаза V, фаза W)			

3.2. Разъём питания тормоза

Электродвигатели серии **BSM** в зависимости от типоразмера имеют разные разъёмы питания тормоза. Блочные вилки **HMS3102A 18-11S** и **HMS3102A 22-12S** имеют одинаковое число и маркировку контактов, но отличаются по диаметру контактов. Расположение контактов разъёма питания электродвигателя показано на рисунке 3.2.1. Сигналы разъёма питания **HMS3102A 18-11S/HMS3102A 22-12S** указаны в таблице 3.2.1.

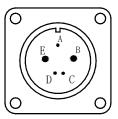


Рисунок 3.2.1 - Расположение контактов разъёма питания тормоза электродвигателя серии BSM HMS3102A 18-11S/HMS3102A 22-12S

Таблица 3.2.1 - Сигналы разъёма питания тормоза HMS3102A 18-11S/HMS3102A 22-12S

Контакт	Сигнал	Назначение	Контакт	Сигнал	Назначение
А	-	Контакты не используются	В	+24V	Внешний источник питания
С	-		E	GND	постоянного тока 24В
D	-		-	-	-

3.3. Разъём датчика положения ротора (ДПР)

Электродвигатели всех типоразмеров серии **BSM** имеют одинаковый разъём ДПР – блочную вилку **HMS3102A 22-14S**. Расположение контактов разъёма ДПР электродвигателя указано на рисунке 3.6. Сигналы разъёма ДПР **HMS3102A 22-14S** представлены в таблице 2.3.1.

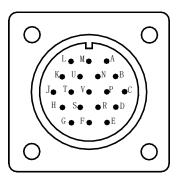


Рисунок 3.3.1 - Расположение контактов разъёма ДПР HMS3102A 22-14S

Таблица 3.3.1 – Сигналы разъёма ДПР электродвигателя серии BSM

Контакт	Сигнал	Назначение	Контакт	Сигнал	Назначение		
K	A+		С	V+			
U	A-	Инкрементальные _ (прямой и инверсный) _ сигналы ДПР	Н	V-	Фазные (прямой и		
N	B+		V	U+	инверсный) сигналы		
В	B-		Р	U-	датчика положения ротора (ДПР):		
J	Z+	Референтные (прямой и	S	W+	фаза U, фаза V, фаза W		
Т	Z-	инверсный) сигналы ДПР	R	W-			
М	+5V	Питание датчика	E	PG	Экран кабеля		
Α	GND	(ток < 250 мА)	D	T1	Выводы контактов		
F	-	Контакты не	G	T2	датчика температуры (сухой контакт)		
L	-	используются	-	-	-		

3.4. Маркировка электродвигателя серии BSM

Каждый электродвигатель серии BSM имеет этикетку, на которой указываются полное условное обозначение электродвигателя, дата изготовления, заводской номер и его конкретные характеристики. Пример этикетки электродвигателя показан на рисунке 3.4.1.

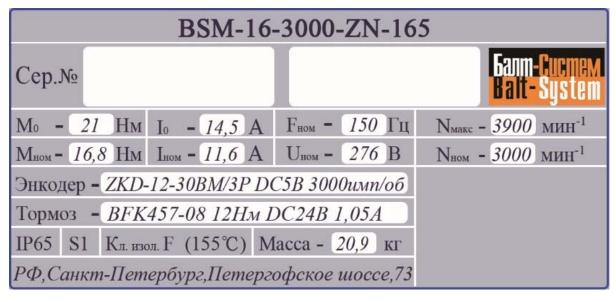


Рисунок 3.4.1 Этикетка двигателя BSM-16-3000-ZN-165

Приложение 1. Чертежи моторов

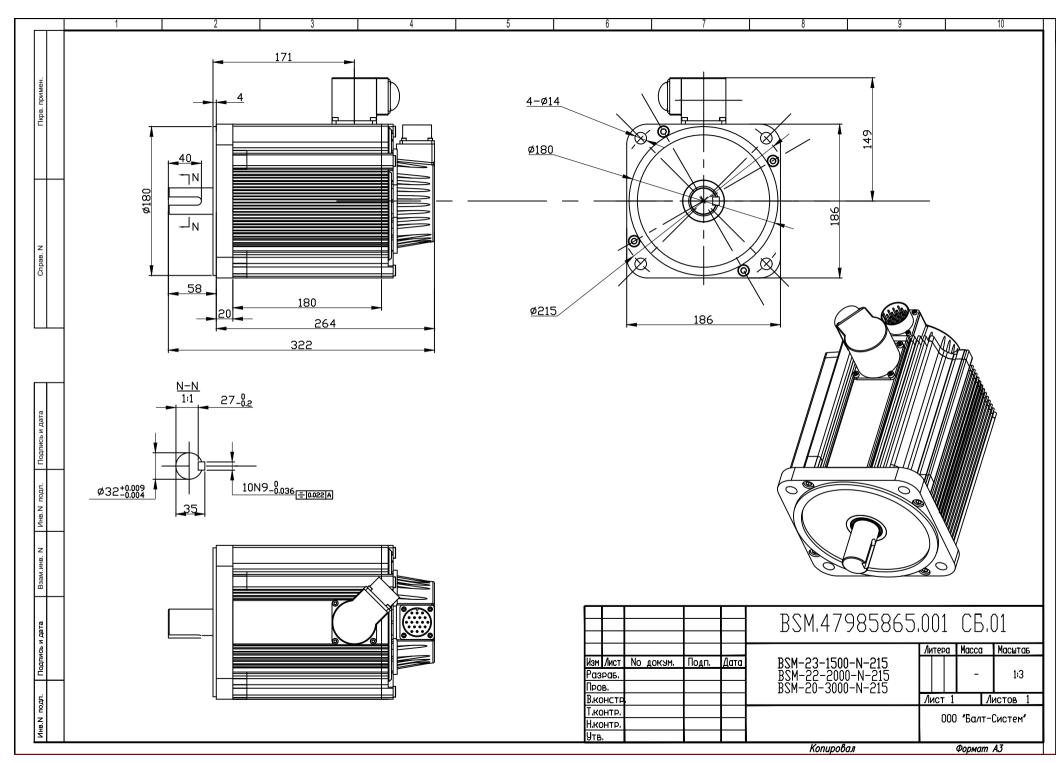


Рисунок 1. BSM-23-1500-N-215, BSM-22-2000-N-215, BSM-20-3000-N-215

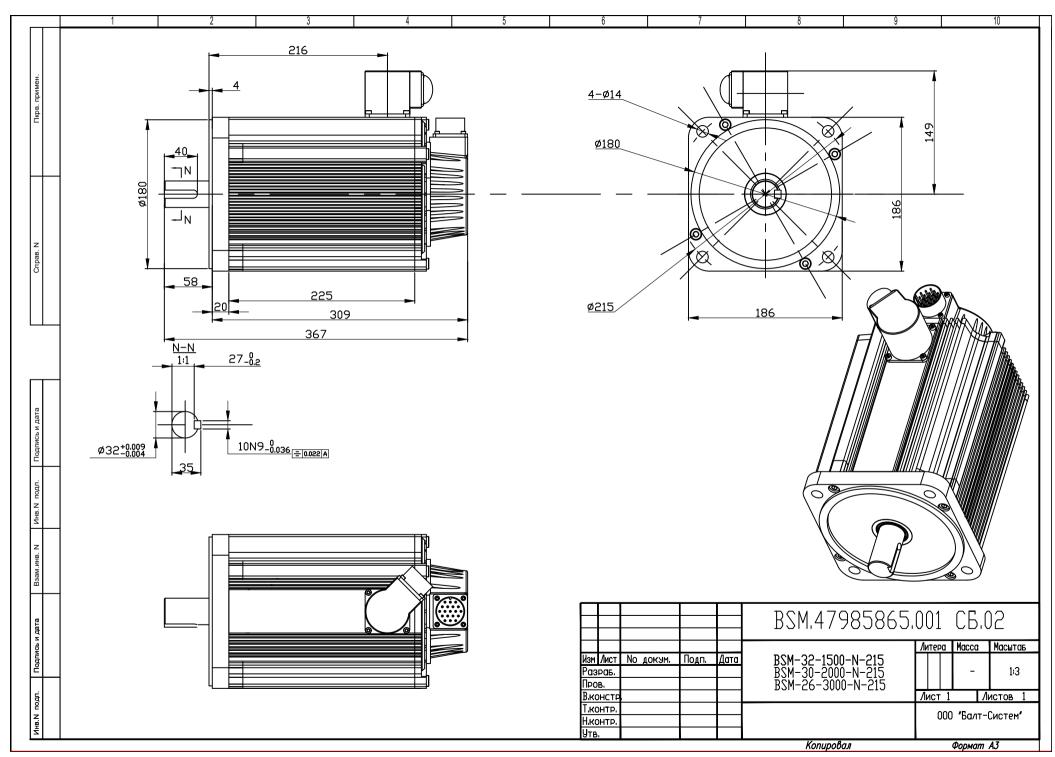


Рисунок 2. BSM-32-1500-N-215, BSM-30-2000-N-215, BSM-26-3000-N-215

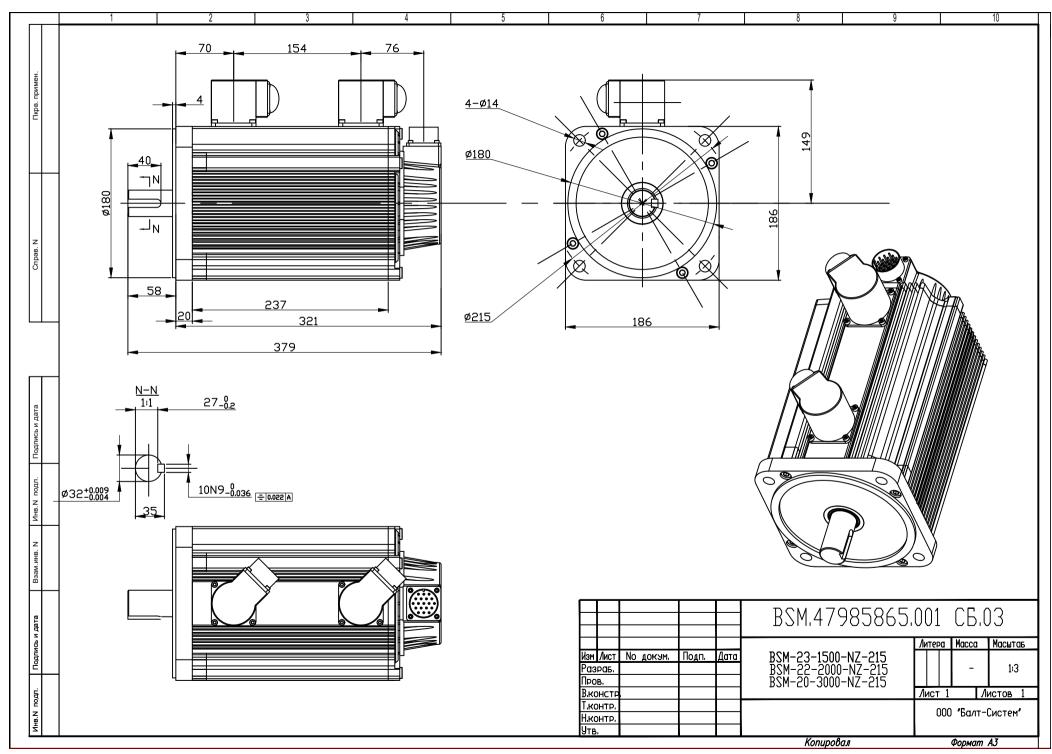


Рисунок 3. BSM-23-1500-NZ-215, BSM-22-2000-NZ-215, BSM-20-3000-NZ-215

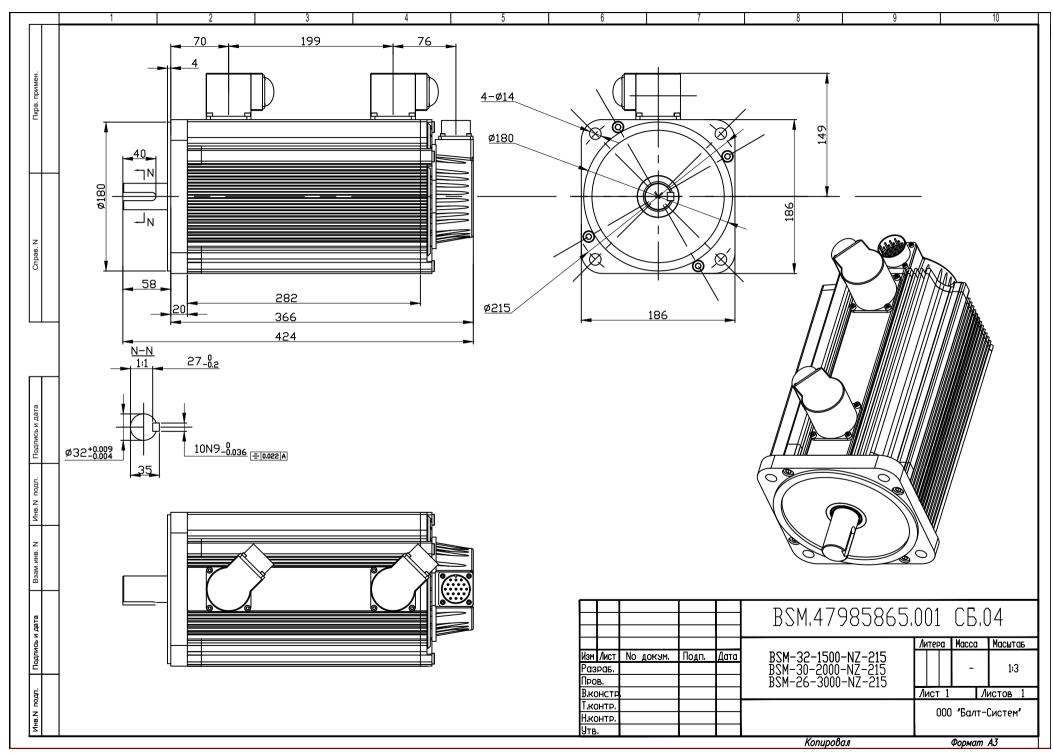


Рисунок 4. BSM-32-1500-NZ-215, BSM-30-2000-NZ-215, BSM-26-3000-NZ-215

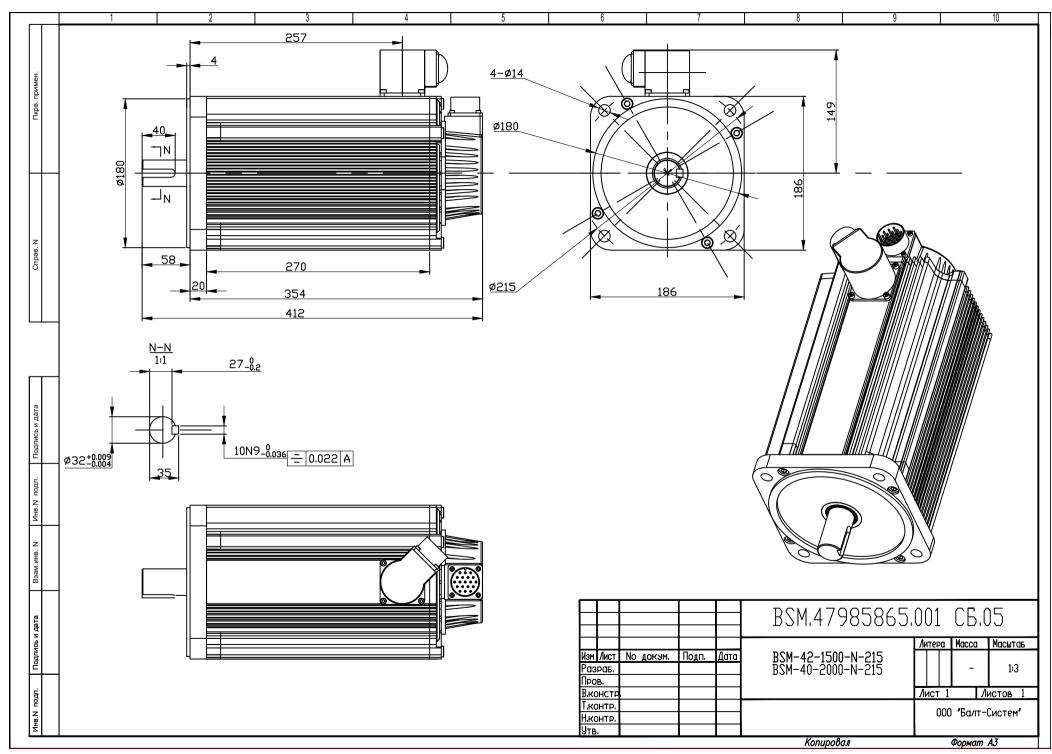


Рисунок 5. BSM-42-1500-N-215, BSM-40-2000-N-215

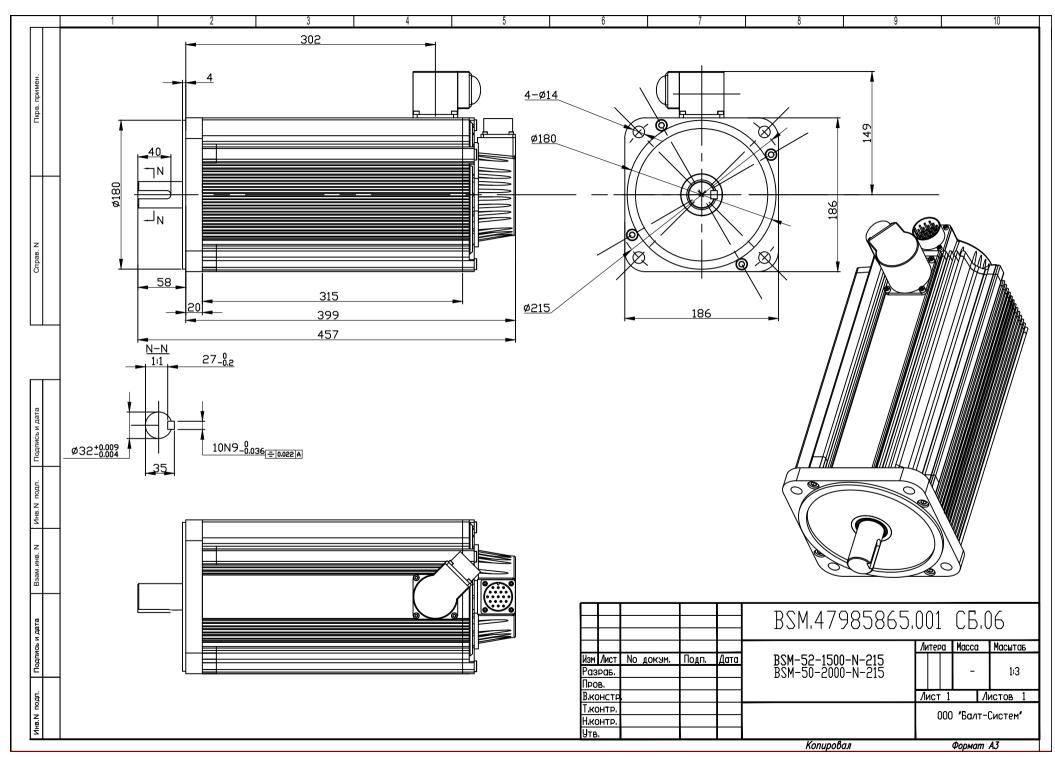


Рисунок 6. BSM-52-1500-N-215, BSM-50-2000-N-215

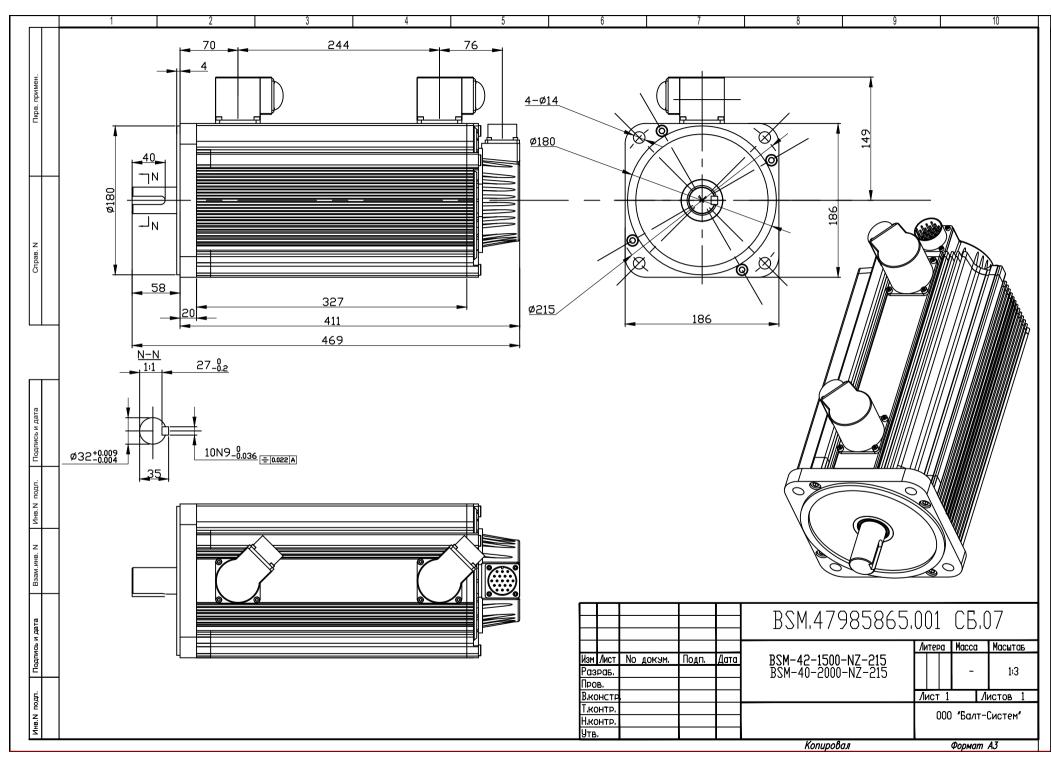


Рисунок 7. BSM-42-1500-NZ-215, BSM-40-2000-NZ-215

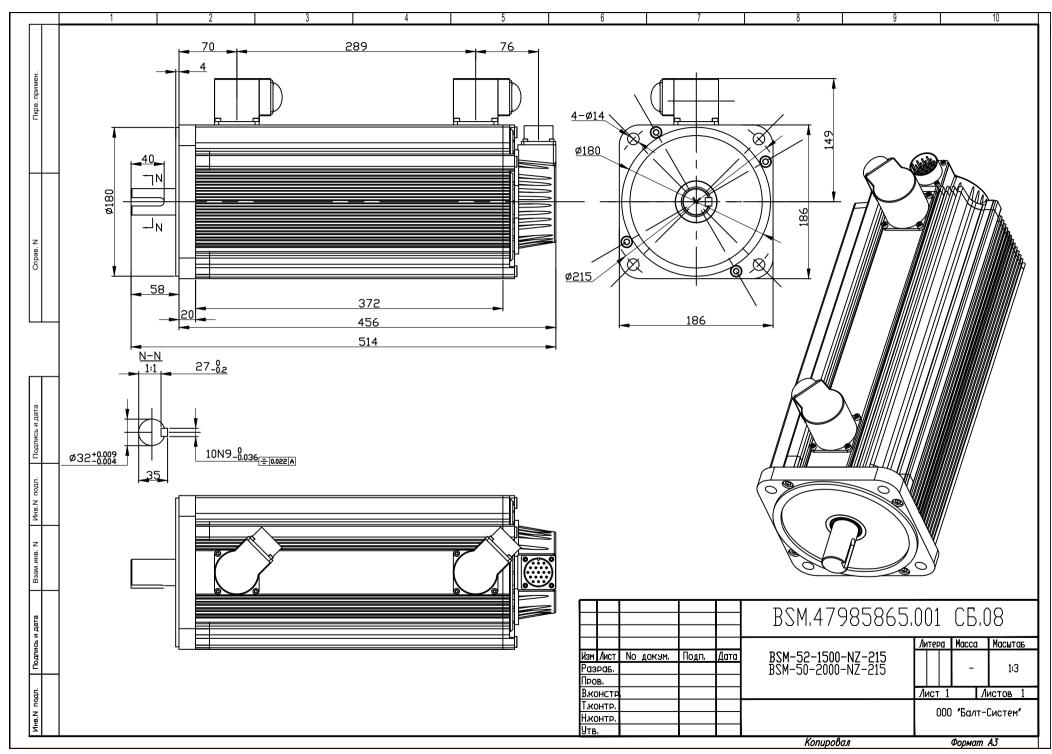


Рисунок 8. BSM-52-1500-NZ-215, BSM-50-2000-NZ-215

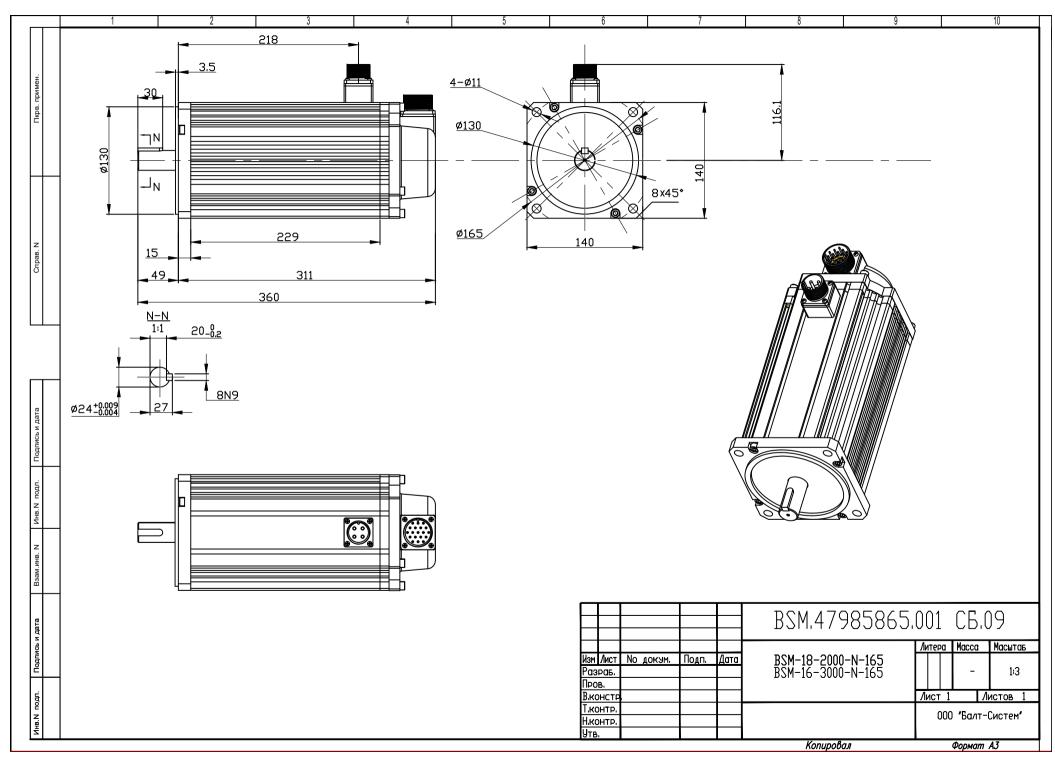


Рисунок 9. BSM-18-2000-N-165, BSM-16-3000-N-165

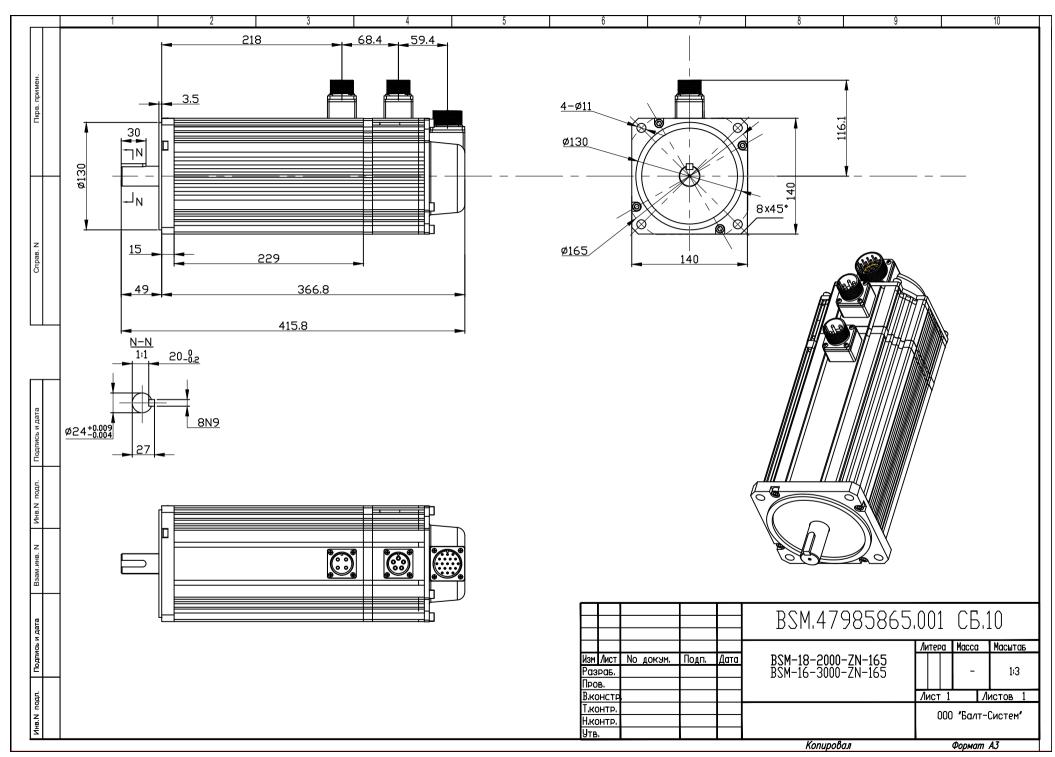


Рисунок 10. BSM-18-2000-ZN-165, BSM-16-3000-ZN-165