
Счетчик тепла SUPERCAL 531

ПАСПОРТ

Руководство по эксплуатации

Серія A № 005672

СЕРТИФІКАТ

затвердження типу засобів вимірювальної техніки

№ UA-MI/1-1215-2009

Виданий 13 листопада 2009 р.

Цей сертифікат, виданий фірмі "AQUATHERM" P.P.H. Kujawinski, Lewko Sp.j., Польща, засвідчує, що на підставі позитивних результатів державних контрольних випробувань Державним комітетом України з питань технічного регулювання та споживчої політики затверджений тип засобів вимірювальної техніки "Теплолічильники Supercal 531, Supercal 539, Supercal...", який зареєстровано в Державному реєстрі засобів вимірювальної техніки за номером У330-09.

Контроль метрологічних характеристик теплолічильників Supercal 531, Supercal 539, Supercal... під час випуску з виробництва здійснює метрологічна служба фірми-виробника, акредитована національною метрологічною службою Польщі.

Міжповірочний інтервал, установлений рішенням Науково-технічної комісії з метрології Державного комітету України з питань технічного регулювання та споживчої політики (протокол № 3 від 21 червня 2006 р.), не більше:

- чотирьох років для теплолічильників модифікацій Supercal 531, Supercal 539;
- трьох років для теплолічильників модифікації Supercal....

СОДЕРЖАНИЕ

			Стр.
	Введ	ение	4
1	Назн	ачение и область применения	4
2		ические данные	4
	2.1	Технические данные вычислителя SUPERCAL 531	4
	2.2	Технические данные преобразователей расхода	6
		Преобразователи расхода фирмы HYDROMETER (Германия)	6
		Преобразователи расхода фирмы APATOR POWOGAZ (Польша)	11
		Преобразователи расхода фирмы SONTEX (Швейцария)	15
	2.3	Технические данные термопреобразователей сопротивления	19
3	Прин	щип действия и устройство	19
	3.1	Состав теплосчетчика	19
	3.2	Принцип действия теплосчетчика	19
	3.3	Снятие показаний с теплосчетчика	19
	3.4	Функции памяти теплосчетчика	21
	3.5	Сообщения об ошибках	21
4	Мари	сировка и пломбирование	24
5	Упак	овка, транспортирование, складирование	25
6	Указ	ание мер безопасности	25
7	Поря	док установки и монтажа	25
	7.1	Монтаж счетчика тепла	25
	7.2	Монтаж тепловычислителя	25
	7.3	Монтаж преобразователя расхода	28
	7.4	Монтаж термопреобразователей сопротивления	29
	7.5	Общие замечания	29
8	Подг	отовка к работе и порядок работы	29
	8.1	Подготовка к работе	29
	8.2	Проверка функционирования	30
	8.3	Техническое обслуживание и уход за счетчиком тепла	30
9	Xapa	ктерные неисправности и методы их устранения	30
0	Комі	лект поставки	31
1	Отме	тки о поверке	32
12	Свед	ения о вводе в эксплуатацию и ремонтах	33
13	Гара	нтии изготовителя	34
	Гара	нтийный талон	35

Настоящее руководство по эксплуатации предназначено для специалистов, осуществляющих монтаж, обслуживание, снятие показаний, контроль работы и поверку теплосчетчиков SUPERCAL 531, производимых предприятием AQUATHERM (Польша).

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

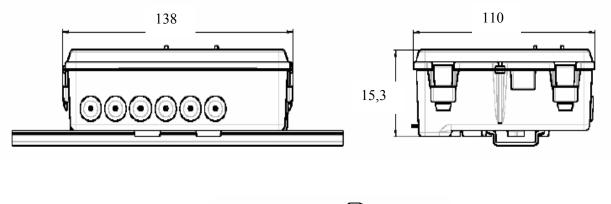
Счетчик тепла SUPERCAL 531 (далее по тексту – теплосчетчик) предназначен для измерения потребленного количества теплоты, объема и объемного расхода теплоносителя, протекающего в подающем или обратном трубопроводе, температуры теплоносителя в подающем и обратном трубопроводах и разности этих температур, тепловой мощности, времени наработки, индикации измеренных величин, а также текущего времени, даты и служебной информации.

Теплосчетчик используется для учета тепловой энергии, в том числе коммерческого, в системах теплоснабжения, в соответствии с действующими правилами учета потребления теплоты на промышленных и коммунальных объектах.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1 Технические данные вычислителя SUPERCAL 531

- **2.1.1** Диапазон измерений температуры теплоносителя в подающем и обратном трубопроводах от 2 до $150\,^{\circ}\mathrm{C}$.
- **2.1.2** Диапазон разности температур теплоносителя в подающем и обратном трубопроводах от 3 до 147 °C.
- **2.1.3** Диапазон измерений объемного расхода теплоносителя (холодной или гарячей воды) от 0.6 до 600 m^3 /час.
 - 2.1.4 Вычислитель работает с нижеперечисленными типами расходомеров:
- механический (стр.6-9; 11-15);
- ультразвуковой (стр.9-11);
- резонансный (суперстатический) (стр.15-18).
- **2.1.5** Подключение термопреобразователей температуры к вычислителю двухпроводное/четырехпроводное. Вычислитель автоматически определяет наличие термопреобразователей температуры.
- **2.1.6** Теплосчетчик измеряет количество теплоты при установке преобразователя расхода в подающем/обратном трубопроводе.
 - 2.1.7 Вычислитель имеет два дополнительных импульсных входа:
- частота входа типа геркон до 5 Гц;
- частота входа типа "открытый коллектор" до 12 кГц;
- диапазон напряжения 0 30 B;
- цена импульса: 0,0001 до 9999,9 имп/л или 1; 10; 100; 1000; 2,5; 25; 250; 2500 л/имп.
- **2.1.8** Вычислитель оборудован двумя импульсными выходами (пропорциональными энергии и объему):
- тип "открытый коллектор";
- напряжение максимум 30 В;
- **-** ток максимум 40 мА;
- частота максимум 5 Гц.
 - 2.1.9 Вычислитель имеет два тарифных счетчика.
- **2.1.10** Вычислитель оборудован памятью EEPROM, в которой записаны архивные данные.
- **2.1.11** Питание вычислителя осуществляется от одного из источников электропитания:
- литиевая батарейка с номинальным напряжением 3,6 В (средняя продолжительность работы 8 лет);
- сеть постоянного тока номинальным напряжением 2 24 В (опция);



- сеть переменного тока номинальным напряжением 115/220 В или 24 В, частотой 45-65 Гц (опция).
 - 2.1.12 Теплосчетчик измеряет физические величины в следующих единицах:
- количество теплоты гигаджоулях, мегаджоулях;
- температуру в градусах Цельсия;
- разность температур в градусах Кельвина;
- объем теплоносителя в метрах кубических;
- тепловая мощность в киловаттах;
- объемный расход в метрах кубических/час.
- **2.1.13** Вычислитель в соответствии с заказом может быть укомплектован следующими коммуникационными модулями:
- ОРТО согласно норме EN 60870-5 (стандартная версия прибора LBTT);
- M-Bus согласно норме EN 1434 (опция, версия прибора LBTB);
- радиомодулем (опция, версия прибора LBTR);
- интерфейсом RS 232 (опция, версия прибора LBTS).
 - 2.1.14 Теплосчетчики соответствуют классу точности 5 по ДСТУ 3339-96.
- **2.1.15** Пределы допускаемой относительной погрешности теплосчетчиков при измерении количества теплоты в зависимости от Δt , составляют:
- $-\pm 8\% (\pm 10\%)$ при 3 °C $\leq \Delta t < 10$ °C;
- $-\pm 7\% (\pm 9\%)$ при 10 °C $\leq \Delta t < 20$ °C;
- $-\pm 5\% (\pm 7\%)$ при 20 °C $\leq \Delta t < 147$ °C.

В скобках приведены номированные значения пределов допускаемой относительной погрешности теплосчетчиков при измерении количества теплоты в интервале диапазона объемного расхода от q_{\min} (включительно) до $0.1q_{\rm t}$.

- **2.1.16** Пределы допускаемой относительной погрешности счетчиков воды, которые входять в состав теплосчетчика:
 - 1) для счетчиков холодной воды:
- \pm 5 % в интервале объемного расхода от q_{\min} (включительно) до $q_{\rm t}$;
- ± 2 % в интервале объемного расхода от q_t (включительно) до q_{max} (включительно).
 - 2) для счетчиков гарячей воды:
- \pm 5 % в интервале объемного расхода от q_{\min} (включительно) до $q_{\rm t}$;
- ± 3 % в интервале объемного расхода от q_t (включительно) до q_{max} (включительно).
- **2.1.17** Термопреобразователи температуры имеют номинальную статическую характеристику Pt500 или Pt100 и класс точности B по ДСТУ 2854-94.
- **2.1.18** Пределы допускаемой относительной погрешности подобранной пары термопреобразователей сопротивления при преобразовании разности температур составляют:
- $\pm (0.5 + 3\Delta t_{\min}/\Delta t) \%$.
- **2.1.19** Пределы допускаемой относительной погрешности вычислителя при преобразовании входных сигналов и вычислении количества теплоты в зависимости от Δt состаляют:
- $-\pm 1,5 \%$ при 3 °C $\leq \Delta t < 20$ °C;
- $-\pm 0.75$ % при 20 °C $\leq \Delta t < 147$ °C (117 °C, 107 °C).
- **2.1.20** Пределы допускаемой абсолютной погрешности вычислителя при измерении времени наработки составляют ± 2 мин за 24 ч.
 - 2.1.21 Теплосчетчики работоспособны при следующих условиях эксплуатации:
- температура окружающего воздуха от +5 °C до +55 °C;
- относительная влажность до 80 % при температуре 25 °C.
 - 2.1.22 Степень защиты корпуса:
- IP 54 πο ΓΟCT 14254-96;
- IP65 (опция) согласно EN 60529.
 - 2.1.23 Габаритные размеры вычислителя приведены на рисунке 1.

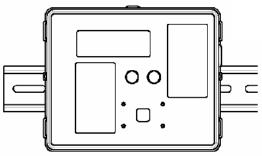


Рисунок 1. Габаритные размеры вычислителя SUPERCAL 531

2.2 Технические данные преобразователей расхода

Преобразователи расхода фирмы HYDROMETER (Германия)

2.2.1 Тип преобразователя расхода:

- механический:
 - одноструйный Е-ТНХКА 444;
 - многоструйный М-ТХКА 413;
- ультразвуковой ULTRASTAR.
 - 2.2.2 Положение монтажа в пространстве:
- монтаж в горизонтальных и вертикальных трубопроводах: E-THXKA 444; ULTRASTAR;
- монтаж в горизонтальных трубопроводах: М-ТХКА 413.
 - 2.2.2 Температура теплоносителя (рабочая):
- 120 0 С для Е-ТНХКА 444, М-ТХКА 413;
- 150 °C для ULTRASTAR.
 - 2.2.3 Давление (рабочее) 16 бар (1,6 МПа).
 - 2.2.4 Для механических расходомеров:
- счетный механизм стрелочно-барабанный сухой с магнитным сцеплением;
- герконовый датчик импульсов, длина кабеля 2 м;
- наличие антимагнитного экрана.
 - 2.2.5 Прямые отрезки трубопроводов для преобразователей расхода:
- тип E-THXKA 444 3DN перед и за преобразователем расхода;
- тип M-ТХКА 413 1,5DN перед и за преобразователем расхода;
- тип ULTRASTAR 5DN перед преобразователем расхода; 2DN за преобразователем расхода.
- **2.2.6** Основные характеристики расходомеров типа E-THXKA 444 приведены в таблице 1.

Таблица 1. Технические характеристики преобразователя расхода типа Е-ТНХКА 444

Характ	еристика		Значение				
Номинальный диаметр DN	V [мм]	1	20				
Номинальный расход От) [м ³ /ч]	0,6	1,5	2,5			
Минимальный расход	горизонтальное	0,012	0,03	0,05			
Qi [m³/4]	вертикальное	0,024	0,06	0,10			
Максимальный расход Q	s [m ³ /ч]	1,2	3	5			
Переходный расход Qt	горизонтальное	0,048	0,12	0,20			
$[M^3/H]$	вертикальное	0,06	0,15	0,25			
Положение монтажа		горизонтальное / вертикальное					
Максимальная емкость шка	лы [м ³]	100000					
Постоянная преобразования	я сигнала V _o [дм ³ /имп]	1; 2,5; 10; 25					
Потеря давления ∆р при Ор	р [бар]	0,22	0,2	0,2			
Резьба G [дюйм]		G=3	$/_4$ B	G=1B			
Размеры	AG [дюйм]	R=1	I_2	$R=^{3}/_{4}$			
	L [MM]	110)	130			
	L1[мм]	190)	228			
	Н [мм]						
Bec	без штуцеров[кг]	0,	1				
	со штуцерами [кг]	1	1,4				

2.2.7 Габаритные размеры преобразователя расхода типа Е-ТНХКА 444 приведены на рисунке 2.

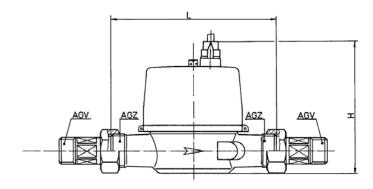


Рисунок 2. Габаритные размеры преобразователя расхода типа Е-ТНХКА 444

2.2.8 Кривая потери давления преобразователя расхода типа Е-ТНХКА 444 представлена на рисунке 3.



Рисунок 3. Кривая потери давления преобразователя расхода типа Е-ТНХКА 444

2.2.9 Основные характеристики расходомеров типа М-ТХКА 413 приведены в таблице 2.

Таблица 2. Технические характеристики преобразователя расхода типа М-ТХКА 413

Характеристика Значение												
	Характеристика				Знач	ение						
Номи [мм]	нальный диаметр DN	15	15	20	20	25	25/32	40	50			
Номи [м ³ /ч	інальный расход Qp 	1	1,5	1,5	2,5	3,5	6	10	15			
Мини [м ³ /ч	имальный расход Qi]	0,025	0,03	0,03	0,05	0,065	0,09	0,16	0,2			
Макс [м ³ /ч	имальный расход Qs]	2	3	3	5	7	12	20	30			
Перез	ходный расход Qt [м ³ /ч]	0,08	0,12	0,12	0,2	0,28	0,48	0,8	1,2			
Поло	жение монтажа			Γ	оризонт	альное						
	имальная емкость ы [м ³]				10	5						
Потеј [бар]	ря давления ∆р при Qр	0,3	0,2	0,2	0,25	0,25	0,25	0,25	0,2			
	оянная преобразования ла V_o [дм 3 /ч]	1; 2,5; 10; 25; 100; 250										
Резьб	ба G [дюйм]	$G=^{1}/_{2}$	$G=^{3}/_{4}$	$G=^{3}/_{4}$	$G=^{3}/_{4}$	G=1	G=1	$G=1$ $^{1}/_{2}$	-			
	АG [дюйм]	$R^{3}/_{4}$ $G^{3}/_{4}B$	R1 G1B _{3/}	R1 G1B	R1 G1B	R1 ¹ / ₄ G1 ¹ / ₄ B	$G1^{1}/_{4}$ $G1^{1}/_{2}$	R2 G2B	-			
19	L [мм]	165	165	190	190	260	260	300	270			
[eb]	L1[MM]	245	288	288	288	378	378	438				
Размеры	Н [мм]	135	135	135	135	140	140	155	180			
P	h [мм]	40	40	40	40	45	45	50	83			
	D [мм]	95	95	105	105	115	115	150	165			
	К [мм]	65	65	75	75	85	85	110	125			
	Ширина [мм]	96	96	96	96	102	102	137	137			
O	без штуцеров[кг]	1,7	1,7	1,9	1,9	2,9	2,9	5,1	-			
Bec	со штуцерами [кг]	2,1	2,1	2,3	2,3	3,5	3,5	6,3	-			
	фланец [кг]	3,5	3,5	3,7	3,7	4,9	4,9	8,6	12,5			

2.2.10 Габаритные размеры преобразователя расхода типа М-ТХКА 413 приведены на рисунке 4.

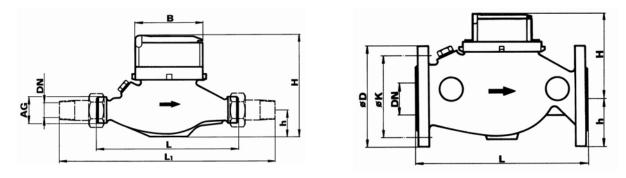


Рисунок 4. Габаритные размеры преобразователя расхода типа М-ТХКА 413

2.2.11 Кривая потери давления преобразователя расхода типа М-ТХКА 413 представлена на рисунке 5.

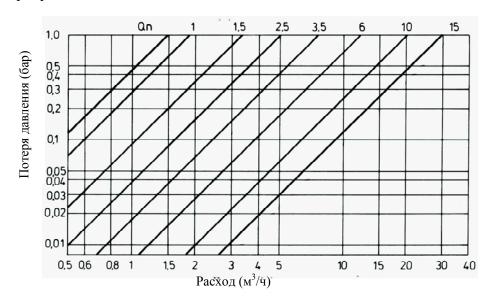


Рисунок 5. Кривая потери давления преобразователя расхода типа М-ТХКА 413

2.2.12 Основные характеристики расходомеров типа ULTRASTAR приведены в таблице 3.

Таблица 3. Технические характеристики преобразователя расхода типа ULTRASTAR

аолица э. технические характеристики преобразователя расхода типа обтказтак										
Характеристика		Значение								
Номинальный диаметр DN [мм]	25	25	25	25	32	40	40	50	65	80
Номинальный расход $Qp[M^3/4]$	3,5	3,5	6	6	6	10	10	15	25	40
Максимальный расход $Qs[m^3/4]$	7	7	12	12	9	20	20	30	50	80
Минимальный расход Qi [м³/ч]	0,0	35	0,024	0,024	0,024	0,1	0,1	0,15	0,25	0,4
Порог чувствительности [л/ч]	7	7	7	7	7	20	20	40	50	80
Потеря давления при Qp [мбар]	44	44	128	128	128	95	95	80	75	80

Характеристика					Знач	ение				
Номинальный диаметр DN [мм]	25	25	25	25	32	40	40	50	65	80
Температура работы [°C]	15 ÷150									
Постоянная преобразования сигнала V_o				1 n	ил50	00л/им	П			
Рабочее давление [бар]					16(2	25)				
Класс защиты корпуса	IP 65									
Положение монтажа	Горизонтально / вертикально									
Длина монтажа [L мм]	260	260	260	260	260	300	300	270	300	300
Вес [кг]	3,35	1,35	1,35	3,35	4,65	2,6	6,6	7,45	9,45	11,1
Высота [Н+Н1 мм]	50+61	23+61	23+61	50+61	62,5+61	33+66,5	69+66,5	73,5+ 71,5	85+79	92,5+ 86,5
Резьба [G]	-	G1	½B	-	-	G2B	-	-	-	-
Диаметр [D мм]	114	-	-	114	139	-	148	163	184	200
Диаметр [К мм]	85	-	-	85	100	-	110	125	145	160
Размер фланца [F мм]	100	-	-	100	125	-	138	147	170	185
Размер электронной части [В х L1 мм]	65,5 x 90									

2.2.13 Габаритные размеры преобразователя расхода типа ULTRASTAR приведены на рисунке 6.

Рисунок 6. Габаритные размеры преобразователя расхода типа ULTRASTAR

2.2.14 Кривая потери давления преобразователя расхода типа ULTRASTAR представлена на рисунке 7.

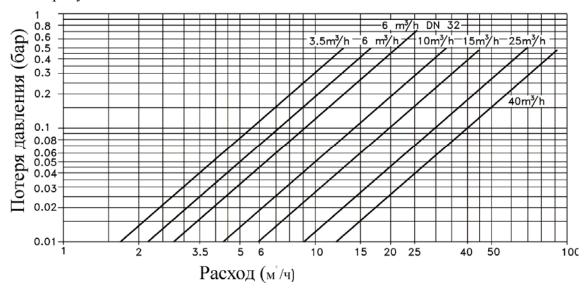


Рисунок 7. Кривая потери давления преобразователя расхода типа ULTRASTAR

Преобразователи расхода фирмы Apator POWOGAZ (Польша)

- 2.2.15 Тип преобразователя расхода:
- механический:
 - одноструйный JS;
 - турбинный (типа Вольтман) MWN.
 - 2.2.16 Положение монтажа в пространстве:
- монтаж в горизонтальных и вертикальных трубопроводах MWN;
- монтаж в горизонтальных трубопроводах: JS.
- **2.2.17** Температура теплоносителя (рабочая): 90° С для JS Dn15-20; 130° С для JS Dn25-40, MWN.
 - **2.2.18** Давление (рабочее) 16 бар (1,6 МПа).
 - 2.2.19 Счетный механизм стрелочно-барабанный сухой с магнитным сцеплением.
- **2.2.20** Герконовый датчик импульсов, длина кабеля 2 м, наличие антимагнитного экрана.
 - 2.2.21 Прямые отрезки трубопроводов для преобразователей расхода:
- тип JS:
 - при монтаже с помощью стандартных штуцеров прямые отрезки не предусмотрены;
- при монтаже после двойного колена (в одной или в двух плоскостях) прямые отрезки составляют: 5DN перед преобразователем и 2DN после преобразователя расхода;
- тип MWN: 3DN перед преобразователем расхода (при монтаже после двойного колена 6DN); 2DN за преобразователем расхода.
- **2.2.22** Основные характеристики расходомеров типа JS Dn15-20 приведены в таблице 4.
- **2.2.23** Габаритные размеры преобразователя расхода типа JS Dn15-20 приведены на рисунке 8.
- **2.2.24** Кривая потери давления преобразователя расхода типа JS Dn15-20 представлена на рисунке 9.

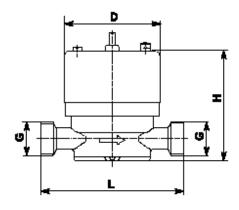


Рисунок 8. Габаритные размеры преобразователя расхода типа JS Dn15-20

Таблица 4. Технические характеристики преобразователя расхода типа JS Dn15-20

	Характеристика		3 _H	ачение					
Номинальн	ый диаметр DN [мм]	15	15	15	20	20			
Номинальн	ый расход Qp [м ³ /ч]	0,6	1,0	1,5	1,5	2,5			
Минимальн	ный расход Qi [м ³ /ч]	0,012	0,02	0,03	0,03	0,05			
Максималь	ный расход Qs [м³/ч]	1,2	2,0	3,0	3,0	5,0			
Переходны	й расход Qt [м ³ /ч]	0,048	0,08	0,12	0,12	0,2			
Потеря дав.	ления при Qp [бар]	0,2	0,3	0,2	0,2	0,2			
Максималь	ная температура работы [°C]	90							
Положение	монтажа	горизонтально (Н)							
Максималь	ная емкость шкалы [м ³]	100000							
Порог чувс	твительности [дм ³ /ч]	3,5	6	8	8	15			
Резьба прис	соединения G [дюйм]	$G=^{3}/_{4}$	$G=^{3}/_{4}$	$G=^{3}/_{4}$	G=1	G=1			
Размеры	L [MM]	110	110	110	130	130			
	Н [мм]			85					
	D[мм]			73					
Масса (без	штуцеров) [кг]	0,49	0,49	0,49	0,56	0,58			

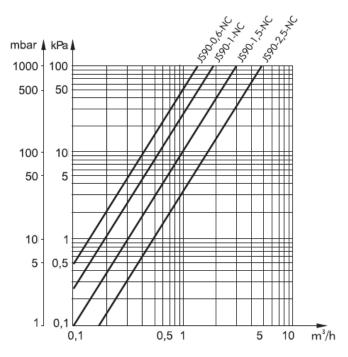


Рисунок 9. Кривая потери давления преобразователя расхода типа JS Dn15-20

- **2.2.25** Основные характеристики расходомеров типа JS Dn25-40 приведены в таблице 5.
- **2.2.26** Габаритные размеры преобразователя расхода типа JS Dn25-40 приведены на рисунке 10.
- **2.2.27** Кривая потери давления преобразователя расхода типа JS Dn25-40 представлена на рисунке 10.

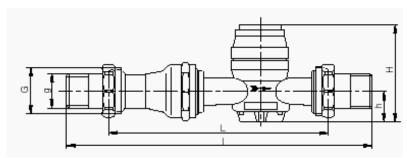


Рисунок 11. Габаритные размеры преобразователя расхода типа JS Dn25-40

Таблица 5. Технические характеристики преобразователя расхода типа JS Dn25-40

	Характеристика	3	начение					
Номинальн	ый диаметр DN [мм]	25	32	40				
Номинальн	ый расход Qp [м³/ч]	3,5	6	10				
Минимальн	ый расход Qi [м ³ /ч]	0,14	0,24	0,3				
Максималы	ный расход Qs [м ³ /ч]	7	12	20				
Переходный	й расход Qt [м ³ /ч]	0,35	0,6	1,0				
Потеря давл	пения при Qp [бар]	0,2	0,3	0,25				
Максималы	ная температура работы [°C]		130					
Положение	монтажа	гориз	горизонтально (Н)					
Максималы	ная емкость шкалы [м ³]		1000000					
Порог чувст	гвительности [м ³ /ч]	0,05	0,09	0,1				
Резьба прис	оединения G [дюйм]	$G=1^{1}/_{4}$	$G=1^{1}/_{2}$	G=2				
Резьба прис	оединения g [дюйм]	G=1	$G=1^{1}/_{4}$	$G=1^{1}/_{2}$				
Размеры	L [mm]	260	260	300				
	1 [мм]	400	400	438				
	Н [мм]		110					
	h [мм]		40					
Масса (без	штуцеров) [кг]	2,2	2,6	2,8				

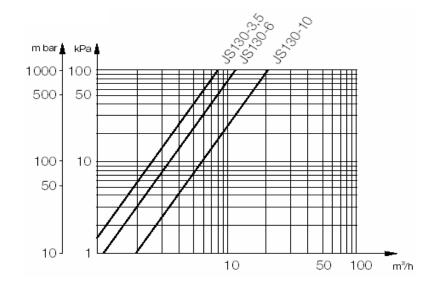


Рисунок 11. Кривая потери давления преобразователя расхода типа JS Dn25-40

2.2.28 Основные характеристики расходомеров типа MWN приведены в таблице 6.

Таблица 6. Технические характеристики преобразователя расхода типа MWN

Характ	геристика		•		•	Знач	нение						
Номиналы DN [мм]	ный диаметр	40	50	65	80	100	125	150	200	250	300		
Номинальн Qp [м ³ /ч]	ный расход	15	15	25	40	60	100	150	250	400	600		
Минималы Qi [м ³ /ч]	ный расход	0,6	0,6	0,8	1,4	1,8	3,5	5,5	10	20	35		
Максималн Qs [м ³ /ч]	ьный расход	30	30	50	80	120	200	300	500	800	1200		
Переходны [м ³ /ч]	ій расход Qt	1,5	1,5	2	3,2	4,8	8	12	20	40	50		
Максимали температур	ьная ра работы [°С]		130										
Положение			горизонтально / вертикально										
Максималн шкалы [м ³]	ьная емкость		10^6 10^7										
Цена элеме деления V _е	1 1		0, 5								50		
Максималн давления ∆	ьная потеря .p _{max} [бар]	0,03	0,02	0,03	0,015			0,0)25				
Рабочее да	вление [бар]					1	16						
Размеры	L [mm]	200	200	200	225	250	250	300	350	450	500		
	h [mm]	65	72	83	95	105	120	135	160	193	230		
	H [mm]	170	180	190	212	222	250	350	375	420	490		
	H1 [mm]	270	280	290	332	342	370	575	600	645	715		
	D ₂ [mm]	150	165	185	200	220	250	285	340	400	460		
Масса [кг]		7,8	9,8	10,5	13,2	15,5	18	40	51	75	103		

2.2.29 Габаритные размеры преобразователя расхода типа MWN приведены на рисунке 12.

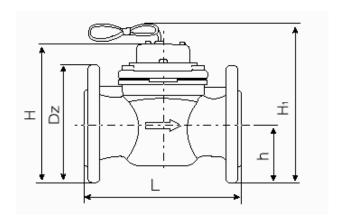


Рисунок 12. Габаритные размеры преобразователя расхода типа MWN

2.2.30 Кривая потери давления преобразователя расхода типа MWN представлена на рисунке 13.

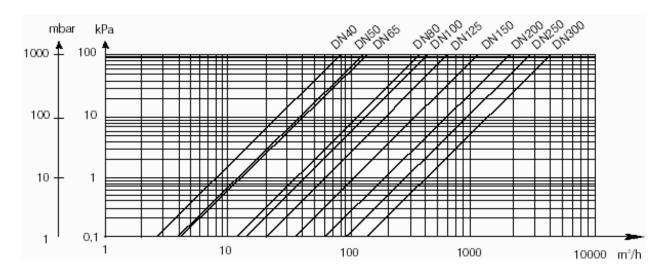


Рисунок 13. Кривая потери давления преобразователя расхода типа MWN

Преобразователи расхода фирмы SONTEX (Швейцария)

- **2.2.31** Тип преобразователя расхода SUPERSTATIC резонансный (суперстатический).
- **2.2.32** Положение монтажа в пространстве монтаж в горизонтальных и вертикальных трубопроводах.
 - **2.2.33** Температура теплоносителя (рабочая): 130° C.
 - **2.2.34** Давление (рабочее) 16/25 бар (1,6/2,5 МПа).
- **2.2.35** Принцип работы пьезоэлектрическое измерение частоты перебрасывания водной струи.
 - 2.2.36 Отсутствие подвижных частей.
 - 2.2.37 Прямые отрезки трубопроводов для преобразователей расхода:
- DN15÷40 прямые участки при монтаже не обязательны;
- DN50÷250 прямые участки при монтаже перед и за преобразователем 3DN.
- **2.2.38** Основные характеристики расходомеров типа SUPERSTATIC приведены в таблице 7.

Таблица 7. Технические характеристики преобразователя расхода типа SUPERSTATIC

Характеристика							3	Вначен	ие					
Номинальный расход qp [м³/ч]	1,0	1,5	2,5	3,5	6,0	10	15	25	40	60	100	150	250	400
Максимальный расход qs [м ³ /ч]	2,0	3,0	5,0	7,0	12	20	30	50	80	120	200	300	500	800
Минимальный расход qi [дм ³ /ч]	10	15	25	35	60	100	150	250	800	1200	2000	3000	5000	8000
Порог чувствительнос- ти [дм ³ /ч]	4	10	10	15	30	50	75	125	400	600	1000	1500	2500	4000
Потеря давления при q _p [бар]	0,2	0,09	0,21	0,16	0,16	0,19	0,19	0,19	0,08	0,08	0,09	0,1	0,1	0,1
Коэффициент преобразователя расхода [имп/дм ³]	51	27,5	27,5	18,5	8,2	5,25 5,15	3,15	1,93	0,82	0,55	0,33	0,22	0,14	0,09
Температура работы [°C]								5 ÷13	0					
Присоедините- льная резьба [дюйм]	³ / ₄ /1	1	11/4	1	¹ / ₄	2	-	-	-	-	-	-	-	-
Диаметр фланцевого соединения DN	-	-	-		25	40	50	65	80	100	125	150	200	250

Характеристика		Значение												
Номинальный расход qp [м ³ /ч]	1,0	1,5	2,5	3,5	6,0	10	15	25	40	60	100	150	250	400
[мм]														
Длина монтажа [L мм]	110	/ 190	190	260	260	300	270	300	300	360	250	300	350	450
Рабочее давление [бар]		16/25							10/1	6/25				

2.2.39 Габаритные размеры преобразователя расхода типа SUPERSTATIC приведены на рисунке 14, в таблицах 8, 9.

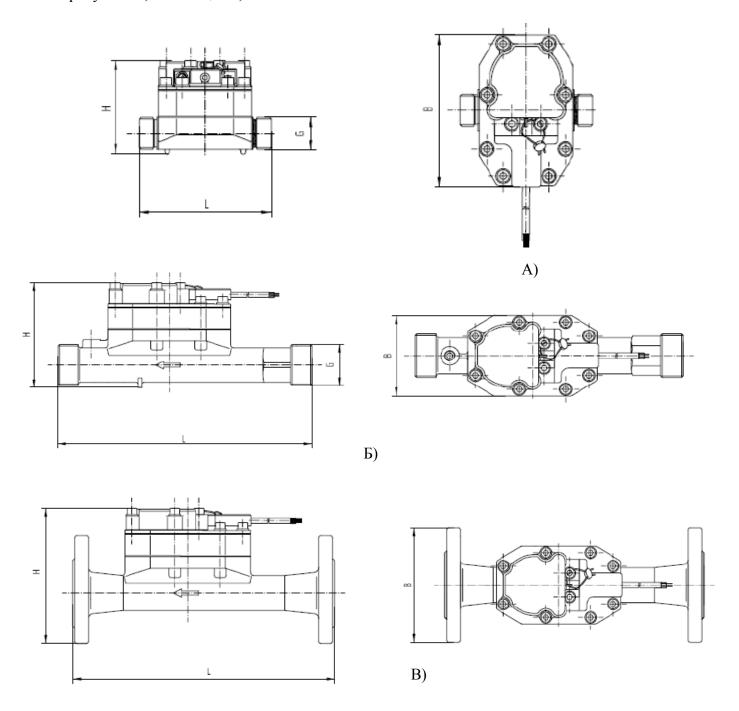


Рисунок 14. Габаритные размеры преобразователя расхода типа SUPERSTATIC

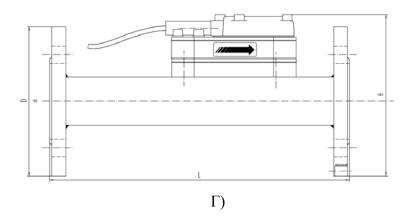


Рисунок 14. Габаритные размеры преобразователя расхода типа SUPERSTATIC

Таблица 8. Габаритные размеры преобразователя расхода типа SUPERSTATIC

Номинальный	Диаметр	Присоединитель-	Номер	В	Н	L	Macca
расход qр	фланцевого	ная	рисунка	[MM]	[MM]	[MM]	[кг]
$[\mathrm{M}^3/\mathrm{H}]$	соединения DN	резьба [дюйм]					
	[MM]						
1	_	3/4		125	79	110	1,8
1		1	Рис.14	125	79	190	2,3
1.5	_	3/4	A)	125	79	110	1,8
1,5		1		125	79	190	2,3
2,5	_	1		125	79	190	2,3
3,5	_	1 1/4	Рис.14	78	105	260	1,96
3,3	25	_	Рис.14	115	134	260	2,9
6	_	1 1/4	Рис.14	78	105	260	1,96
O	25	_	Рис.14	115	134	260	2,9
10	_	2	Рис.14	78	122	300	6,1
10	40	_	Рис.14	150	157	300	7,0

Таблица 9. Габаритные размеры преобразователя расхода типа SUPERSTATIC

Номинальный	Диаметр	Номер	D	d [мм]	Н [мм]	L [mm]	Macca
расход qp	фланцевого	рисунка	[MM]				[кг]
15	50		165	53	176	270	12,2
25	65		185	69	194	300	12,8
40	80		200	81	208	300	12,2
60	100		220	107	231	360	14,6
100	125	Рис.14	250	132	258	250	16,0
150	150	Γ)	285	159	290	300	26,0
250	200		340	207	343	350	30,0
400	250		405	260	402	450	57,0
40	80		200	81	208	225	11,5
60	100		220	107	231	250	14,0
150	150		285	159	290	500	23,0

2.2.40 Кривая потери давления преобразователя расхода типа SUPERSTATIC представлена на рисунке 15.

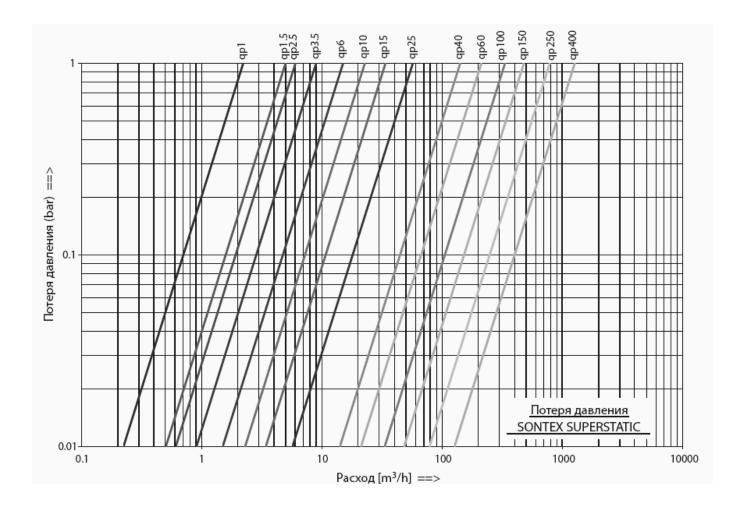


Рисунок 15. Кривая потери давления преобразователя расхода типа SUPERSTATIC

2.3 Технические данные термопреобразователей сопротивления

- **2.3.1** Тип датчиков: Pt500, пара, подобранная на компьютере.
- **2.3.2** Диапазон измеряемой температуры: 0 200 $^{\circ}$ С.
- 2.3.3 Подсоединительные элементы: кожухи для монтажа в трубопровод.
- 2.3.4 Кабель в силиконовой оболочке: длина 2 м. (может быть удлинен до 10 м.).
- **2.3.5** Рекомендуемый подбор длины термопреобразователей сопротивления в зависимости от диаметра трубопровода приведен в таблице 10.

Таблица 10. Подбор термопреобразователей сопротивления

		1				
Условный диаметр трубопровода	Ду	MM	15 –	25 –	100 - 150	более
			20	80		200
Длина термопреобразователей	L	MM	34	84	134	174

2.3.6 Габаритные размеры термопреобразователей сопротивления приведены на рисунке 16.

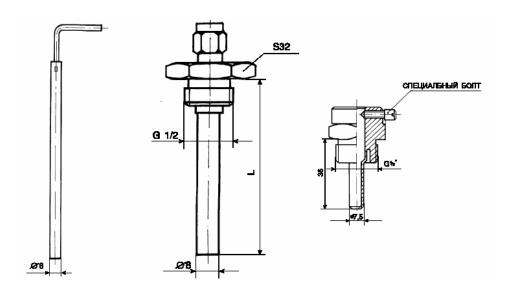


Рисунок 16. Габаритные размеры термопреобразователей сопротивления

3 ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО

3.1 Состав теплосчетчика

В состав теплосчетчиков входят:

- вычислитель;
- преобразователь расхода;
- подобранная пара термопреобразователей сопротивления.

По отдельному заказу в состав теплосчетчика могут входить до двух дополнительных счетчиков холодной или горячей воды, имеющих выходной импульсный сигнал и внесенных в Государственный реестр средств измерительной техники.

3.2 Принцип действия теплосчетчика

Принцип действия теплосчетчика основан на преобразовании вычислителем сигналов, поступающих от преобразователя расхода и подобраной пары термопреобразователей сопротивления, в информацию об измеряемых параметрах теплоносителя с последующим вычислением, на основании известных зависимостей, количества теплоты, объема теплоносителя и других параметров.

Вычисление количества теплоты производится по формуле:

- при установке преобразователя расхода в подающем трубопроводе:

$$Q_{\rm p} = V_{\rm m} \cdot \Delta t \cdot K_t, \tag{1}$$

- при установке преобразователя расхода в обратном трубопроводе:

$$Q_{p} = V_{o} \cdot \Delta t \cdot K_{t}, \tag{2}$$

где V_n , V_o – объем теплоносителя, прошедшего через подающий или обратный трубопровод соответственно, M^3 ;

 Δt — разность температур теплоносителя в подающем и обратном трубопроводах, $^{\mathrm{o}}\mathrm{C}$:

 K_t - k-фактор, $\Gamma \coprod \mathscr{M}/(M^3 \cdot {}^{\circ}C)$ [МДж/ $(M^3 \cdot {}^{\circ}C)$].

3.3 Снятие показаний с теплосчетчика

Методы снятия показаний с вычислителя теплосчетчика:

- непосредственный с жидкокристаллического дисплея вычислителя (стандарт);
- инкассаторским комплектом посредством выхода ОРТО (стандарт);

– модуль M-BUS, Radio, RS 232– в зависимости от модели (опция).

Дисплей вычислителя SUPERCAL 531 легко доступен для снятия показаний (рисунок 17) и отображает последовательно группы данных, показывающих значения измеряемых и рассчитываемых параметров.

Память прибора содержит 8 групп (петель) данных, причем пользователю видны только 7 первых групп данных, служебная группа закрыта для пользователей.

Рисунок 17. Схема дисплея вычислителя теплосчетчика

Доступны следующие группы данных (графическое описание на лицевой панели вычислителя под дисплеем):

- **1.** Основные энергия, объем, вход 1 и 2, температура «подачи» и «обратки», разность температур, мгновенная мощность, мгновенный расход и тест дисплея.
- **2.** Избранные дни значения (энергия, объем, дополнительные импульсные входы A1 и A2) двух запрограммированных дней в году. Запись производится на начало дня.
- 3. Месячные просмотр значений за последние 15 месяцев.
- 4. Средние последние 32 значения за период расчета средних значений.
- **5.** Максимальные последние 32 значения в запрограммированных периодах расчета.
- **6.** Конфигурация текущая дата, время, цена импульса, единицы измерения, период усреднения и расчета месячных значений.
- 7. Служебная группа № клиента, № заводской, тип программы и оборудования, возможности, тип датчиков температуры, место монтажа, время работы, кол-во дней без начисления расхода и энергии, текущая ошибка, время работы с ошибкой и время появления ошибки.
- **8.** Тест отображается в служебной группе. (Доступен только для персонала сервисного центра).

На рисунке 18 представлена полная схема отображения информации теплосчетчика по группам данных (по желанию клиента схему можно изменить).

Переход из одной группы отображаемых данных в другую производится при помощи

, находящихся в центральной части вычислителя.

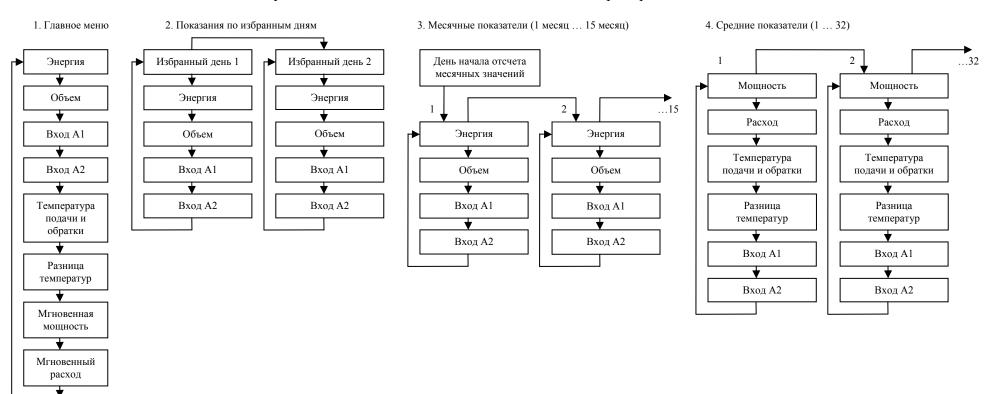
Кнопка служит для:

- выбора группы или подгруппы отображаемых данных (месячные значения, средние значения, максимальные значения или подробное описание ошибки). Номер группы отображается стрелкой внизу дисплея;
 - просмотра данных в выбранной группе или подгруппе.

Кнопка служит для входа в группу или подгруппу (вход в группу сигнализируется миганием стрелки внизу дисплея).

Одновременное нажатие обеих кнопок возвращает нас к первому отображению данной группы.

3.4 Функции памяти теплосчетчика


Память теплосчетчика имеет следующие значения:

- значения в двух запрограммированных (день, месяц) выбранных днях в году (энергия, объем, дополнительные импульсные входы A1 и A2);
- значения месячный архив значений за последние 15 месяцев (энергия, объем, дополнительные импульсные входы A1 и A2) , программируется день записи значений (стандарт первый день месяца 00.00 часов);
- значения средние архив последних 32 средних значений (тепловая мощность, объемный расход, температура в подающем и обратном трубопроводах, разница этих температур, дополнительные импульсные входы A1 и A2), программируется период усреднения (от 1 минуты до 45 дней, стандарт 24 часа (сутки));
- значения максимальные архив последних 32 максимальных значений (тепловая мощность, объемный расход, температура в подающем и обратном трубопроводах, разница этих температур, дополнительные импульсные входы A1 и A2), программируется период расчета (от 1 часа до 1 года, стандарт 1 месяц (из среднесуточных значений за месяц выбирается максимальное));
- архив ошибок реестр 10 последних ошибок (код шибки, длительность ошибки в минутах, дату и время появления ошибки), если одновременно имеют место несколько ошибок значение их кодов суммируется.

3.5 Сообщения об ошибках

В случае возникновения эксплуатационных помех в работе счетчика тепла, на дисплее вычислителя появляются сообщения, обозначенные символом " Err-__" с соответствующей, характерной для данной ошибки, цифрой (кодом). Коды ошибок теплосчетчика приведены в таблице 11.

Рисунок 18. Схема последовательности показаний прибора SUPERCAL 531

Тест дисплея

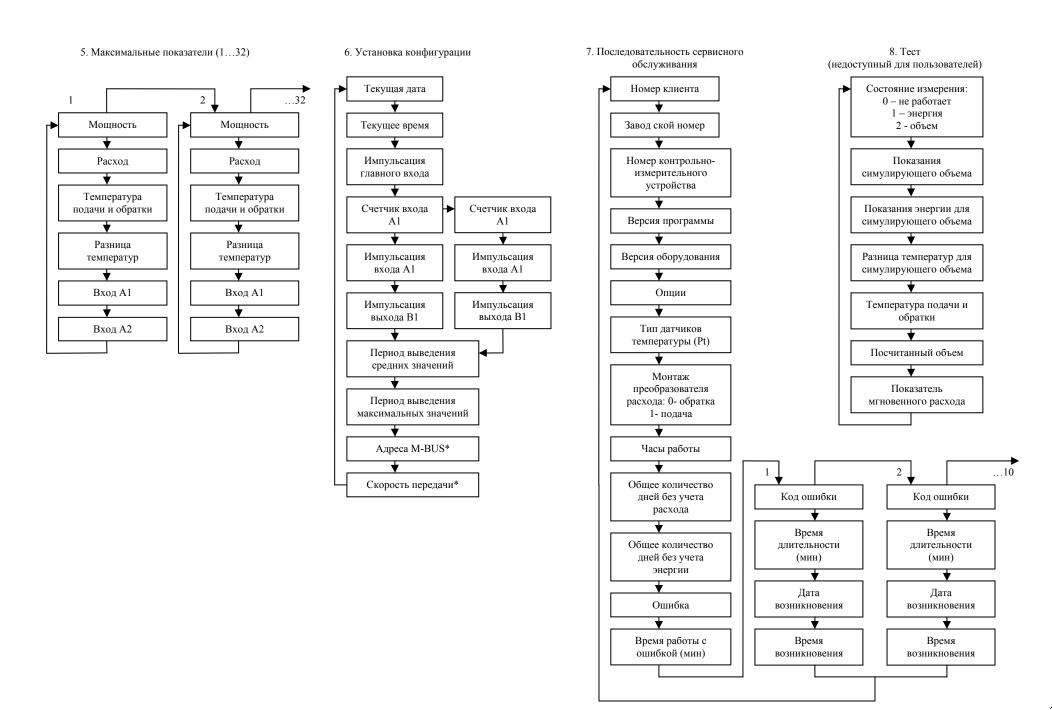


Таблица 11. Коды ошибок тепловычислителя

Код	Описание ошибки
Err 1	повреждение датчика температуры на подаче
Err 2	повреждение датчика температуры на возврате
11	инверсия температур (ошибка при монтаже/ замена датчиков температуры)
Err 4	превышение допустимого мгновенного расхода
Err 8	повреждение памяти EEPROM на уровне измерений
Err 16	повреждение памяти EEPROM на уровне программы
Err 32	ошибка конфигурации памяти EEPROM на уровне измерений
Err 64	ошибка конфигурации памяти EEPROM на уровне программы
Err 128	повреждение преобразователя AD (аналогово- цифровой)
Err 256	падение напряжения (касается вычислителей с питанием от сети или от шины M-Bus)
Err 512	повреждение дополнительного модуля 1
Err 1024	повреждение дополнительного модуля 2
Err 2048	повреждение импульсного входа 1
Err 4096	повреждение импульсного входа 2
Err 8192	авария вычислителя

Информация об ошибке, которая содержится в теплосчетчике (см. архив ошибок), включает:

- код ошибки;
- продолжительность ошибки в минутах;
- дату появления ошибки;
- время появления ошибки.

Если одновременно имеют место несколько ошибок значения их кодов суммируются.

4 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 4.1 Маркировка нанесена на вычислителе и содержит следующую информацию:
- товарный знак и (или) наименование предприятия-изготовителя;
- наименование и (или) условное обозначение теплосчетчика;
- порядковый номер и год выпуска по системе нумерации предприятия-изготовителя.
- **4.2** Все элементы счетчика тепла пломбируются заводом-изготовителем согласно с конструкторской документацией.

Тепловычислитель пломбируется двумя пломбами, обе пломбы стоят на верхней части вычислителя с внутренней стороны. Одной пломбой в виде наклейки 12х12 мм с заводским знаком пломбируется контактное гнездо, которое дает возможность запрограммировать основной канал счетчика тепла. Вторая пломба ставится на защелку, которая закрывает доступ внутрь верхней части вычислителя.

Преобразователь расхода в зависимости от типа пломбируется двумя (одноструйные) или тремя (многструйниые и типа Вольтман) пломбами. Одна пломба ставится на болты, крепящие счетный механизм и турбину непосредственно с корпусом преобразователя. Вторая пломба ставится болт, крепящий антимагнитный экран, закрывающий счетчик с датчиком импульсов. Третьей пломбой пломбируется регулировочный винт.

Пара датчиков температуры с кабелем составляет единое целое. Чтобы избежать распаривания, каждая пара скреплена хомутом. Датчик термопреобразователи сопротивления, устанавливаемый на подающем трубопроводе, пломбируется биркой красного цвета. Термопреобразователи сопротивления на обратном трубопроводе, пломбируется биркой синего пвета.

5 УПАКОВКА, ТРАНСПОРТИРОВАНИЕ, СКЛАДИРОВАНИЕ

- **5.1** Теплосчетчик упакован в транспортную тару, изготовленную в соответствии с чертежами предприятия-изготовителя. Эксплуатационная документация, входящая в комплект поставки теплосчетчика, уложена в транспортную тару. Порядок размещения теплосчетчиков в транспортной таре, масса и габаритные размеры грузовых мест соответствуют чертежам предприятия-изготовителя.
- **5.2** Счетчик тепла транспортируется в упаковке, в закрытых транспортных средствах. Категорически запрещается кидать упаковки либо подвергать их воздействию атмосферных осадков.
- **5.3** Счетчик тепла должен храниться в закрытых помещениях при температуре от -25°C до +55°C и относительной влажности воздуха не более 90%. Воздух в помещении, в котором хранятся счетчики, не может содержать едких и коррозионно-активных испарений.

6 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- **6.1** В случае осуществления питания от батареи напряжением 3,6 В вычислитель не обладает существенными факторами, имеющими опасный характер при работе с ним. В случае осуществления питания от сети переменого тока опасным производственным фактором является напряжение 220 В в силовой электрической цепи.
 - 6.2 Безопасность эксплуатации обеспечивается:
 - изоляцией электрических цепей приборов, входящих в состав теплосчетчика;
 - надежным креплением приборов при монтаже на объекте;
 - надежным заземлением составных частей теплосчетчика (для напряжения питания 220 В).
- **6.3** Устранение дефектов теплосчетчика, замена, присоединение и отсоединение внешних цепей, должно производиться только **ПРИ ОТКЛЮЧЕННОМ НАПРЯЖЕНИИ ПИТАНИЯ.** Теплосчетчик от питающей сети отключается при помощи внешнего выключателя, расположенного вблизи счетчика.

7 ПОРЯДОК УСТАНОВКИ И МОНТАЖА

7.1 Монтаж счетчика тепла

Монтаж счетчика тепла необходимо провести согласно настоящей инструкции и рекомендациям поставщика тепловой энергии. Особое внимание необходимо обратить на правильное электрическое соединение и установку преобразователя расхода в соответствии с направлением потока теплоносителя. МОНТАЖ ДОЛЖЕН ПРОИЗВОДИТЬСЯ ПОДГОТОВЛЕННЫМ ПЕРСОНАЛОМ ПОСЛЕ ПРОВЕДЕНИЯ ВСЕХ СВАРОЧНЫХ И МОНТАЖНЫХ РАБОТ НА УЗЛЕ! Все повреждения, вызванные несоблюдением вышеуказанных условий, не подлежат гарантийному обслуживанию.

7.2 Монтаж тепловычислителя

Вычислитель SUPERCAL 531 отличается двухуровневой конструкцией (рисунок 19):

- нижняя часть крепится на стене и имеет подсоединительную планку;
- верхняя часть содержит измерительную часть.

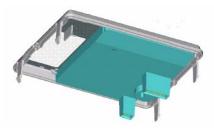
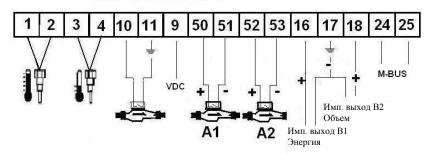


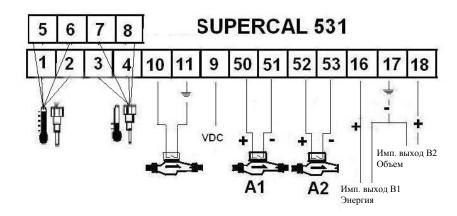

Рисунок 19. Конструкция вычислителя

Конструкция облегчает монтаж прибора и позволяет производить в нем изменения (перекалибровка, техническое обслуживание) без необходимости демонтажа прибора из сети.

Доступ в верхнюю часть вычислителя закрывает пломба.


Нижняя часть монтируется на стене, а затем, согласно обозначениям на присоединительной планке, к ней присоединяются составные элементы счетчика тепла (датчики температуры, преобразователь расхода) (рисунок 20 A), Б), В), 21, 22 и таблица 12).

SUPERCAL 531



А) стандартная версия вычислителя (LBTT)

SUPERCAL 531

Б) версия вычислителя с шиной M-BUS (LBTB)

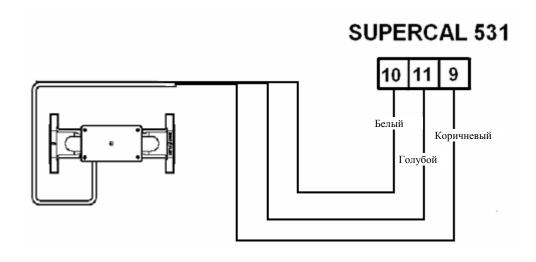
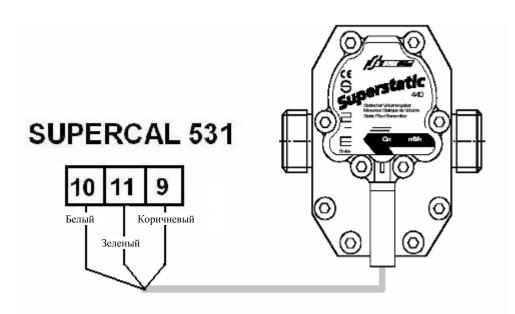

В) стандартная версия вычислителя с четырехпроводными датчиками температуры (LBTT)

Рисунок 20. Схема подсоединительной планки вычислителя


Таблица 12. Обозначения подсоединительной планки тепловычислителя

Номер	Описание
соединения	
1,2	Двух кабельный датчик температуры «на подаче»
1,2 , 5,6	Четырех кабельный датчик температуры «на подаче» (опция)
3,4	Двух кабельный датчик температуры «на возврате»
3,4, 7,8	Четырех кабельный датчик температуры «на возврате» (опция)
10	Импульсный вход преобразователя расхода (+)
11	Импульсный вход преобразователя расхода (-), масса для питаемых преобразователей
9	Питание для преобразователя расхода +VDC
50	Дополнительный импульсный вход А1 (+)
51	Дополнительный импульсный вход А1 (-)
52	Дополнительный импульсный вход А2 (+)
53	Дополнительный импульсный вход А2 (-)
16	Импульсный выход ОС В1 (+)
17	Импульсный выход ОС B1 i 2 (-)
18	Импульсный выход ОС B2 (+)
24	M-Bus (опция)
25	M-Bus (опция)

SUPERCAL 531 (номер соединения)	ULTRASTAR (087)
10	белый (сигнал)
11	голубой (масса для питаемых преобразователей)
9	коричневый (питание для преобразователя расхода)
	желтый (используется для тестирования расходомера)

Рисунок 21. Схема подключения SUPERCAL 531 + ULTRASTAR 087

SUPERCAL 531 (номер соединения)	SUPERSTATIC
10	белый (сигнал)
11	зеленый (масса для питаемых преобразователей)
9	коричневый (питание для преобразователя расхода)

Рисунок 22. Схема подключения SUPERCAL 531 + SUPERSTATIC

Внимание: Вычислитель не может находиться в открытом состоянии более нескольких часов. Продолжительность отсоединения индицируется в минутах на дисплее вычислителя.

После подсоединения элементов счетчика тепла рекомендуется опломбировать вычислитель пломбой пользователя (пломбу можно поставить на проволочке, протянутой через оба ушка на корпусе вычислителя).

7.3 Монтаж преобразователя расхода

Поток теплоносителя должен совпадать с направление стрелки на корпусе преобразователя расхода (ПР).

При нормальной работе ПР должен быть полностью заполнен водой.

ПР монтируется в позиции, рекомендуемой производителем:

- ПР монтируется на прямом или обратном трубопроводе (согласно проекту и указаниям на боковой этикетке вычислителя);
- место установки ПР должно быть удобным для съема показаний, доступным для контроля и домонтажа;
 - перед и за ПР необходимо предусмотреть установку запорных кранов;
- перед и за ПР необходимо предусмотреть прямые участки (согласно рекомендациям производителя);
- участки трубопровода перед и за ПР должны быть соосны, что позволит избежать напряжений на корпусе ПР;
- перед ПР необходимо установить сетчатый фильтр или отстойник для защиты от загрязнений, за ПР рекомендуется установка второго фильтра на случай заполнения системы обратной подачей;
 - рекомендуется использование водомерных вставок при демонтаже ПР;
- перед монтажом ПР необходимо промыть систему с целью удаления загрязнений. После промывки очистить фильтр.

7.4 Монтаж термопреобразователей сопротивления

Датчики температуры монтируются симметрично по отношению к оси трубопровода в подающем и обратном трубопроводах (Рисунок 23).

Кожухи датчиков монтируются в вваренных в трубопровод гильзах. Длина гильз подбирается в зависимости от диаметра трубопровода таким образом, чтобы конец кожуха находился приблизительно 4 мм ниже оси трубопровода (при монтаже перпендикулярно или под углом) или в оси трубопровода (монтаж в колене). Рекомендуется монтаж датчиков в направлении, противоположном потоку воды, под углом 45°.

Необходимо обеспечить достаточно места для замены датчиков, принимая во внимание длину погружной части и теплоизоляцию трубопровода.

Для улучшения теплопроводности, рекомендуется заполнить гильзу **силиконовым** маслом.

Провода должны быть по мере возможности прикреплены к стене.

Необходимо обратить внимание на то, чтобы термопреобразователи перед опломбированием были полностью помещены в гильзы.

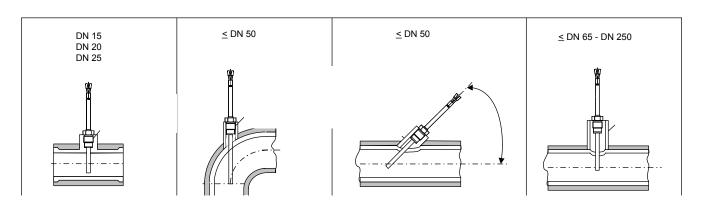


Рисунок 23. Схема монтажа датчиков температуры

7.5 Обшие замечания

Настоящая инструкция является основным документом, позволяющим ознакомиться с условиями правильного обслуживания и эксплуатации счетчиков тепла с вычислителем SUPERCAL 531. Производитель предоставляет консультации в случае возникновения трудностей в процессе монтажа или эксплуатации.

8 ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ

8.1 Подготовка к работе

Все элементы счетчика тепла имеют таблички с указанием технических параметров для проверки комплектации.

Ввод в эксплуатацию, удаление воздуха, заполнение необходимо производить постепенно открывая краны. **Необходимо избегать гидроударов.**

Внимание: Вычислитель SUPERCAL 531 не требует специальной защиты от электропомех, однако необходимо избегать влияния электромагнитных полей (двигатели, трансформаторы) и близкого расположения электрических кабелей.

Перед вводом в эксплуатацию необходимо:

- проверить место и правильность монтажа, согласно с проектом, настоящей документацией и рекомендациям поставщика тепла;
- проверить данные счетчика тепла, тип и длину датчиков температуры, место монтажа ПР (подача/ возврат);
 - проверить пломбы элементов;

- проверить работоспособность вычислителя SUPERCAL 531 (тест дисплея, рисунок 16).

8.2 Проверка функционирования

После монтажа составных частей теплосчетчика надо убедиться в нормальном функционировании узла учета тепла. Для этого следует последовательно вывести на табло значения температуры и объемного расхода. При сомнениях в правильности этих значений необходимо проверить монтаж цепей и настроечные параметры преобразователя расхода и термопреобразователей сопротивления на соответствие требованиям технической документации.

8.3 Техническое обслуживание и уход за счетчиком тепла

Счетчик тепла в процессе эксплуатации не требует дополнительного ухода и регулировки. Обслуживание состоит в снятии показаний и периодической проверке состояния электросоединений. Вычислитель необходимо поместить в щиток (желательно герметичный) во избежании попадания влаги внутрь прибора.

Внимание: Все ремонтные и контрольные действия могут проводиться только уполномоченными лицами.

9 ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Перечень характерных и наиболее часто встречающихся или возможных неисправностей, их вероятные причины, методы наиболее быстрого и простого выявления и устранения этих неисправностей приведены в таблице 13.

Таблица 13. Характерные неисправности и методы их устранения

Наименование неисправности, внешнее проявление	Вероятная причина	Метод устранения
1. Не измеряется температура. На дисплее сообщение «Err1» или «Err2»	1) Неправильно подключен соответствующий термопреобразователь сопротивления. 2) Обрыв или короткое замыкание в линии подключения	Проверить монтаж соответствующего термопреобразователя сопротивления, устранить дефект.
2. Не измеряется расход. На дисплее сообщение «Err0»	соответствующего термопре- образователя сопротивления. 1) Преобразователь расхода отключен от вычислителя. 2) Короткое замыкание в сигнальной линии подключения преобразователя расхода. 3) Отсутствие расхода	Проверить монтаж преобразователя расхода, устранить дефект. Проверить подключение ультразвукового (резонансного) расходомера к вычислителю (соответствие
	теплоносителя (нормальный режим работы для системы с автоматическим регулированием).	цветовой маркировки кабелей схеме в паспорте).
3. Отсутствие индикации на дисплее вычислителя.	1) При работе вычислителя от литиевого элемента питания — разряд батареи. 2) При работе вычислителя от сети — отсутствие напряжения.	Проверить напряжение и ток на литиевом элементе питания. Проверить напряжение в сети.
4. На дисплее сообщение	Повреждение	Проверить монтаж и

Наименование неисправности, внешнее проявление	Вероятная причина	Метод устранения
«Err128»	термопреобразователей сопротивления, влияние электромагнитного излучения на кабель термопреобразователей сопротивления.	подключение термопреобразователей сопротивления, убедиться в отсутствии силовых электрических кабелей вблизи кабеля термопреобразователей сопротивления.
5. На дисплее сообщение «Err4»	Превышение мгновенного расхода — несоответствие шага импульса на вычислителе и расходомере.	Проверить соответствие импульсации на вычислителе и расходомере.

10 КОМПЛЕКТ ПОСТАВКИ

Комплект поставки теплосчетчика приведен в таблице 14.

Таблица 14. Комплект поставки теплосчетчика

Наименование и условное обозначение	Количество	Примечание
Электронный тепловычислитель SUPERCAL 531	1 шт.	Тип прибора – в соответствии с заказом
Преобразователь расхода: механический, ультразвуковой, резонансный	1 шт.	Типоразмер – в соответствии с заказом
Пара датчиков температуры Pt 500 с двухжильным кабелем с защитными кожухами (гильзами), (опция – четырехжильный кабель)	1 пара	Типоразмер – в соответствии с заказом
Руководство по эксплуатации с гарантийным талоном	1 экз.	

11 ОТМЕТКИ О ПОВЕРКЕ

Дата	Результат поверки	Ф.И.О. поверителя	Подпись и оттиск клейма

12 СВЕДЕНИЯ О ВВОДЕ В ЭКСПЛУАТАЦИЮ И РЕМОНТАХ

Дата	Наименование работы	Кто проводил	Подпись
i		1	

13 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **13.1** Изготовитель гарантирует соответствие параметров теплосчетчика требованиям документации изготовителя при соблюдении условий транспортирования, хранения и эксплуатации теплосчетчика.
 - 13.2 Гарантийный срок 12 месяцев с даты продажи прибора.
- 13.3 Для проведения гарантийного обслуживания необходимо предъявить гарантийный талон и письмо с описанием неисправности прибора.
- 13.4 Изделия с механическими повреждениями, сорванными пломбами или следами неправильной эксплуатации не подлежат гарантийному обслуживанию.
- **13.5** Гарантийное и послегарантийное обслуживание теплосчетчиков SUPERCAL 531 производит фирма ANTAP GRUPA либо ее уполномоченный представитель в Украине -

ГАРАНТИЙНЫЙ ТАЛОН № _____

Счетчик тепла: SUPERCAL 531

Межповерочный ин	тервал: 4 года			
Комплект:				
Тепловычислитель S	UPERCAL 531	<u>№</u>		
Преобразователь рас	хода фирмы	<u>№</u>		
Тип	Модель	DNmm	Qnм ³ /ч	шаг импульса
Пара термопреобразо сопротивления типа		№		
Внимание: преобра	изователь расхода мон обратном / пода		ебопроводе:	
Дата выпуска:				
Подпись:				МΠ
Поверка прибора _		-		
Наименование и почт	овый адрес дилерской	фирмы:		
Дата продажи:			МΠ	
Пожения				