Оглавление

1.	Вве	дение	2
2.	Прав	вила техники безопасности	3
3.	Гара	нтия на продукт	5
4.	Уст	ройство инвертора	6
	4.1	Описание сетевой системы	6
	4.2	Описание инвертора	7
	4.3	Работа инвертора в режиме слежения за точкой максимальной	
	мощ	ности	9
5.	Реж	имы работы инвертора 1	0
	5.1	Пробный запуск 1	.1
	5.2	Рабочий статус 1	.1
	5.3	Индикаторы1	3
	6.4	Жидкокристаллический дисплей 1	3
6.	Инт	ерфейс передачи данных 2	24
	6.1	Порт RS-232	24
	7.2	АКSG/Встроенный WLAN (Опция) 2	24
	6.3	Порт «Сухой контакт»	25
	6.4	Дистанционное управление 2	25
7	Уст	ановка и подключение	26
	7.1	Внешний осмотр	26
	7.2	Выбор места установки 2	26
	7.3	Порядок установки 2	27
	7.4	Требования к подключению инвертора 2	29
	7.5	Порядок подключения	30
8.	Пои	ск и устранение неисправностей	31
9.	Text	нические характеристики 3	33

1. Введение

Благодарим вас за приобретение однофазного инвертора, производства нашей компании. Этот инвертор преобразует постоянный ток солнечных батарей в переменный ток, который подается в коммунальную электрическую сеть. В данном устройстве объединены высокая надежность и продуктивность с передовыми технологиями.

Данное руководство содержит важные инструкции относительно безопасности и эксплуатации, которые необходимо знать, и которым следует четко следовать в процессе эксплуатации.

Установку, настройку и эксплуатацию инвертора необходимо осуществлять в соответствии с настоящим руководством. Перед использованием данного устройства внимательно прочитайте руководство пользователя. Если вы не можете устранить проблему, свяжитесь с вашим местным дистрибьютором.

Надеемся, что вы будете удовлетворены нашими продуктами.

2. Правила техники безопасности

1. Возможно поражение электрическим током

В данном продукте имеются цепи переменного тока (AC) и постоянного тока (DC). Во избежание поражения электрическим током в процессе технического обслуживания или установки, не забудьте перед началом работ отключить источники и потребители AC и DC.

2. Эксплуатация инвертора

Продукт разрешается устанавливать и обслуживать исключительно специалистам сервисного центра. Инвертор разрешается запускать исключительно в следующих условиях: корпус или крышка находятся в закрытом состоянии, без повреждений, все винтовые соединения закручены.

3. Требования к сетевому подключению

Эти инверторы используются исключительно для подачи питания в муниципальную сеть, не пытайтесь подсоединять к ним какие-либо иные источники энергии.

4. Защита от высоких температур

В процессе работы некоторые части инвертора нагреваются. Иногда их температура может достигать 60°С. Не прикасайтесь к этим частям во избежание ожогов.

He выполняйте какие-либо работы, связанных монтажем/демонтажем, проверкой или заменой компонентов при включенном питании. Опасное для жизни напряжение может все еще оставаться в инверторе даже после того, как вы отключили выключатели AC и DC. Подождите как минимум 5 минут после выключения инвертора. Это обеспечит разряд конденсаторов и исчезновение остаточного напряжения.

Рекомендуется использовать устройства защитного отключения (УЗО) или мониторинга (МОТ) для защиты пользователя от поражения электрическим током при появлении потенциала на корпусе инвертора и тока в проводе защитного заземления. Допускается использовать УЗО и МОТ только типа В.

Инвертор необходимо заземлить перед эксплуатацией.

Обеспечьте надлежащее заземление инвертора, неправильное подключение или отсутствие заземления может вызвать выход его из строя.

Обеспечьте надежную установку и электрическое соединение.

Когда фотопанели подвергаются воздействию света (даже в пасмурную погоду), они все равно вырабатывают напряжение.

Рекомендуемые солнечные модули должны соответствовать Классу А IEC61730.

Данные инверторы предназначены только для солнечных модулей на основе кристаллического кремния

Для защиты PCE, пользователя и установщика, выключатели DC и AC должны быть установлены в месте использования.

Проводка должна соответствовать местным стандартам. Выбирайте правильное сечение кабеля для линий ввода и вывода питания. Кабели ввода и вывода должны быть предназначены исключительно для фотоэлектрики и пригодны для использования вне помещения..

3. Гарантия на продукт

Инвертор должен быть упакован в оригинальную упаковку или в аналогичный упаковочный материал.

Гарантия на данный продукт охватывает все недостатки или повреждения, связанные с дизайном, производством или компонентами. Гарантия не распространяется на следующее:

- * Послегарантийный период.
- * Изделия, на которых отсутствует серийный номер продукта и гарантийный талон.
- * Повреждения по причине ненадлежащей транспортировки.
- * Повреждения в результате неправильной установки, несанкционированной модификации, технического обслуживания.
- * Повреждения, вызванные работой в условиях не соответствующим тем, которые указаны в данном руководстве.
- Повреждения, вызванные несоблюдением требований к установке и эксплуатации, предусмотренных международными стандартами или нормами.
- Повреждения, вызванные действием чрезвычайных ситуаций, стихийных бедствий.

4. Устройство инвертора

4.1 Описание сетевой системы

Как правило, система, соединенная с сетью, состоит из 4 элементов: фотоэлектрическая батарея, фотоэлектрический инвертор, блок подключения AC.

Под воздействием солнечных лучей фотоэлектрические батареи вырабатывают постоянный ток. Постоянный ток солнечных батарей преобразовывается инвертором в переменный, который передается в электросеть. Схема сетевой системы показана на рисунке 1.

Рисунок 1 – Схема сетевой системы

4.2 Описание инвертора

Инвертор преобразует постоянный ток поступающий с фотоэлектрических элементов, в переменный ток и подает его в коммунальную электросеть. Инвертор разработан и произведен в соответствии с требованиями законов и норм. Данный инвертор имеет следующие достоинства:

- * Простота установки
- * Удобное техническое обслуживание, простота эксплуатации
- * Высокая эффективность передачи энергии в сеть
- Высокий уровень слежения за точкой максимальной мощности, максимальный уровень слежения за точкой максимальной мощности >99,5%
- * Высокая надежность
- * Стандартное соединение RS-232 и опциональное соединение RJ45
- * Класс защиты IP65 подходит для наружной установки.

Изображение инвертора приведено на рисунке 2.

Инвертор содержит следующие органы управления и порты:

- 1. ЖК-дисплей. Отображает рабочий статус и прочую информацию.
- 2. Светодиоды и кнопка. Светодиоды отображают рабочий статус, кнопка используется для переключения отображаемой информации.
- 3. Порты входа DC. Инверторы оснащены двумя парами портов постоянного тока, каждая пара входов имеет положительный (+) и отрицательный (-) коннектор. Назначение положительного и отрицательного коннектора приведено в разделе «Установка».
- 4. Выключатель DC. (опционально).
- 5. Водонепроницаемый пневмоклапан. Предназначен для балансировки внутреннего и внешнего давления.
- 6. Порты выхода AC. Оборудование подключается к коммунальной сети с помощью этих портов. Схема подключения приведена в разделе «Установка».
- 7. Порт AKSG/WLAN (опция). Используется для связи нескольких инверторов через порт AKSG или подключения устройства записи и выдачи данных WI-FI.
- 8. Порт «Сухой контакт». Используется для управления внешними устройствами.
- 9. Порт RS-232. Посредством этого интерфейса пользователь может использовать компьютер для связи с оборудованием. Предусмотрена водонепроницаемая крышка для защиты коннекторов RS-232.

Детальное описание указанных портов приведено в разделе 7

Внешний вид нижней панели инвертора, при снятых водонепроницаемых крышках, приведен на рисунке 3.

Рисунок 3 – Нижняя панель инвертора

4.3 Работа инвертора в режиме слежения за точкой максимальной мощности

При использовании любых батарей и при любых условиях система может быстро отслеживать максимальную мощность батарей. Точка максимальной мощности определяется характеристиками солнечной панели. Пример характеристик солнечной панели приведен на рисунке 4.

Рисунок 4 – Характеристики солнечной панели.

В процессе отслеживания точки максимальной мощности солнечных панелей инвертор корректирует собственный статус, при этом возможны незначительные колебания выходной мощности инвертора. Когда инвертор определяет точку максимальной мощности – выходная мощность инвертора стабилизируется.

5. Режимы работы инвертора

5.1 Пробный запуск

Инвертор разрешается запускать только после проведения следующих проверок:

- 1. Правильное подключение кабелей АС.
- 2. Все солнечные батареи правильно подключены к инвертору.
- 3. Затянуты все винты.
- 4. Включен выключатель между DC и AC.

Инвертор автоматически запускается, когда фотоэлектрические батареи вырабатывают напряжение более 120В.

5.2 Рабочий статус

Рабочий статус делится на три типа: нормальный рабочий статус, статус сбоя и статус отключения.

1. Нормальный рабочий статус

Есть два режима: режим ожидания и режим работы. В этом режиме система работает в нормальном режиме. Отслеживаются все функциональные данные для обеспечения эффективности системы.

Как только напряжение ФЭ батарей падает ниже 150В, но все еще выше 120В, инвертор переходит в режим ожидания, в этом состоянии инвертор работает, и все функции тестирования находятся в состоянии готовности, но питание не подается в муниципальную электросеть. Когда напряжение ФЭ батарей становится более 150В, инвертер возвращается в рабочий режим после самодиагностики и начинает подавать энергию в муниципальную сеть.

Процесс перехода из режима ожидания в рабочий режим при увеличении напряжения фотоэлектрической батареи от 120В показан на рисунке 6.

Рисунок 6 – Процесс перехода из режима ожидания в рабочий режим.

2. Состояние сбоя

Инвертор всегда находится в состоянии умного мониторинга. В случае сбоя (перегрузка по напряжению в сети, выход частоты за пределы) или в случае неисправности компонентов, инвертор перейдет в состояние сбоя. Информация о неисправности может быть выведена на ЖКД, пока горит красный индикатор.

Пример индикации показан на рисунке 7.

Рисунок 7 – Пример индикации.

3. Статус останова

Когда напряжение на выходе ФЭ батареи ниже определенного порога, инвертор переходит в статус останова. ЖК-дисплей и индикаторы отключаются, и энергия с инвертора не подается в сеть. В этот период инвертор не потребляет энергию, а все клавиши становятся неактивными.

5.3 Индикаторы

На передней панели есть 2 индикатора: красный и зеленый. В нормальном рабочем состоянии горит зеленый индикатор. Функции этих индикаторов следующие:

Рабочий (зеленый индикатор): горит при нормальном рабочем состоянии. Отключается в ночное время, когда ток не поступает с солнечных батарей.

Ошибка (красный): включается в случае сигнала тревоги или сбоя.

6.4 Жидкокристаллический дисплей

1. Кнопка и подсветка

Есть два типа нажатия кнопок: короткое нажатие – менее 0,5 секунды и длительное нажатие – более 1 секунды. Короткое нажатие используется для перелистывания страниц, перемещения курсора; длительное нажатие используется для блокировки экрана, выбора позиции, настройки и возврата в предыдущее меню.

Подсветка ЖК-дисплея отключается через 180 секунд бездействия. Чтобы включить подсветку ЖК-дисплея, нажмите любую клавишу.

2. Рабочий режим

Когда инвертор находится в рабочем режиме, коротким нажатием кнопки можно изменить экран. Варианты отображаемой информации при нажатии кнопки показаны рисунке 8.

Рисунок 8 – Перечень информации, отображемой на ЖК-дисплее.

Если длительно нажать кнопку на какой-то странице, она будет заблокирована. Так же, длительное нажатие приводит к разблокировке страницы. Возврат на начальную страницу осуществляется автоматически, если на протяжении длительного периода времени не была нажата ни одна кнопка, и ЖКД не был заблокирован.

Страница «Автоматическое тестирование» отображается только в случае, если инвертор настроен на режим «Италия».

3. Режим настройки

Инвертор можно перевести в режим настройки длительны нажатием кнопки, когда он находится в режиме сбоя, например, когда сеть не

подсоединена к инвертору. При длительном нажатии кнопки вы возвращаетесь к предыдущему уровню меню или выходите из режима настроек, если курсор стоит на названии страницы (верхняя строка страницы).

• Главное меню настроек

• Подменю настроек спецификации сети

Внимание: Проверьте локальные характеристики сети инвертора (Таблица 9.2) на предмет соответствия реальным требованиям, и сбросьте в случае несоответствия!

• Подменю настройки режима ФЭ входа

Короткое нажатие кнопки – переместить курсор, длинное нажатие кнопки – выбор позиции.

предела частоты сети

• Подменю сброса Wi-Fi

• Подменю настройки адреса 485

• Подменю настройки протокола 485

• Подменю записи

Очистить запись

• Подменю статистики

• Подменю сброса на заводские настройки

4. Описание информации на ЖК-дисплее

Рабочее состояние	Сообщение на Описание					
	английском	Onneume				
H	Нормальный рабочий статус					
Инвертор ВЫКЛ.	Ничего не	ФЭ напряжение <70В, инвертор				
	отображается	выключен.				
Режим ожидания инвертора	Stand-by	$120B < \Phi$ Э напряжение < 150B				
	Chastring	ФЭ напряжение >150В, инвертор				
Самодиагностика	Checking	запускается и осуществлять				
Норман ная выработка		самодиатностику всех модулей				
электроэнергии, слежение за		Выработка питания АС и подача в				
точкой максимальной	Normal	муниципальную сеть после				
мощности		завершения самодиагностики				
Эк	ран мониторинга па	раметров				
Моментальная номинальная	VVVV W/	Моментальная номинальная				
мощность и объем	XXXXX Kwh	мощность и аккумулированная				
выработанной энергии		выработанная энергия				
Напряжение и ток на входе	DC :XXX.X V	Напряжение и ток с ФЭ батарей				
PV1/PV2	XXX.X A					
Напряжение и ток на выходе	AC: XXX.X V	Напряжение и ток сети				
AC	XXX.X A	1				
C 1 N K I	Экран системных					
Grid Volt Low	F00	Слишком низкое напряжение АС.				
Grid Frageney Levy	F01 E02	Слишком высокое напряжение АС.				
Grid Frequency Low	F02 E02	Слишком низкая частота АС.				
Bus Voltage Low	F03 F04	Слишком высокая частота АС.				
Bus Voltage High	F04	Слишком низкое напряжение шины.				
Bus Voltage High	F06	Лисбаданс напряжения шины				
Bus voit choulance	100	Слишком низкое сопротивление				
Isolation Fault	F07	изоляции ФЭ элементов.				
Input Current Over	F08	Слишком высокий ток на входе ФЭ.				
	E00	Слишком высокий ток аппаратного				
Hardware Curr Over	F09	обеспечения.				
Inverter DCI Over	F11	Слишком высокий ток DC инвертора.				
Amb Temperatur Over	F12	Слишком высокая температура				
And Temperatur Over	112	окружающей среды.				
Sink Temperatur Over	F13	Слишком высокая температура				
		радиатора.				
AC Relay Fault	F14	Сбой реле АС.				
	115	Один из входов ФЭ не задействован,				
PV Loss Fault	F15	когда инвертор настроен на				
		параллельный режим.				
Remote Off	F16	отключение листанического				
Remote On	110	управления				
Reserved	F17	Резервный				
SPI Communicat Fault	F18	Сбой связи на контрольной плате				
Reserved	F19	Резервный.				
GFCI Over Fault	F20	Слишком большая утечка тока.				
GFCI Device Fault	F21	Сбой самодиагностики утечки тока.				
Walt Canalater E	E22	Несоответствие напряжения между				
voit Consistnt Fault	F22	основным и подчиненным ЦП.				

Рабочее состояние	Сообщение на английском	Описание
Freq Consistnt Fault	F23	Несоответствие частоты между основным и подчиненным ЦП.
DSP Operation Fault	F24	Сбой связи ЦОС на контрольной плате.
DSP Communicat Fault	F32	Сбой связи ЦОС на контрольной плате.

6. Интерфейс передачи данных

В данном инверторе предусмотрены режимы передачи данных RS232 и RS485, WLAN – опция.

6.1 Порт RS-232

Порт передачи данных RS-232 выполнен на разъеме D-sub (тип DB9). Откройте водонепроницаемую крышку перед использованием порта RS-232. Один инвертор можно контролировать с помощью компьютера посредством интерфейса RS-232. Длина кабеля от инвертора до компьютера не должна превышать 15м. Можно обновлять программное обеспечение с помощью этого интерфейса. Описание пинов порта приведено в таблице 1.

	RS-232	AKSG
Пин	Сигнал	Сигнал
1	N.C.	(A)T/R+
2	TxD	(B)T/R-
3	RxD	N.C
4	N.C.	N.C
5	Общий	Общий
6	N.C.	Общий
7	N.C.	5B
8	N.C.	5B
9	N.C.	

Таблица 1 – Описание пинов порта RS-232/AKSG.

7.2 AKSG/Встроенный WLAN (Опция)

Порт AKSG используется для связи нескольких инверторов. В инверторе устанавливается один опциональный коннектор RJ-45, который как порт передачи данных AKSG, удобен для соединения нескольких инверторов, до 32 штук одновременно через один кабель, но длина кабеля не должна превышать 1000м.

Модуль WI-FI может быть встроенным в инвертор для обеспечения связи одного инвертора или нескольких инверторов посредством Ethernet.

Если Вам необходима функция WLAN, а Вы приобрели модель с портом AKSG, Вы можете приобрести внешний модуль WI-FI.

Описание контактов порта приведено на рисунке 9.

Взаимосвязь пинов между инвертором и блоком GPRS/WI-FI.

Рисунок 9 – Описание контактов порта AKSG.

6.3 Порт «Сухой контакт»

Порт «Сухой контакт» реализован на нормально разомкнутом контакте электромеханического реле. Цепи «Сухого контакта» выведены на клеммы (рисунок 10). Реле переключает «Сухой контакт» в замкнутое положение при обнаружении пробоя изоляции или ошибки заземления. Пользователь может использовать его для выдачи звуковых или визуальных сигналов тревоги. Данное реле позволяет коммутировать следующие токи: до 0,25A при U=250B (AC), до 0,5A при U=125B (AC) до 2A при U=30B (DC).

Рисунок 10 – Клеммы порта «Сухой контакт».

6.4 Дистанционное управление

Инвертор можно удаленно отключать и включать, а также можно осуществлять настройку ограничения мощности с помощью программного обеспечения для мониторинга.

7 Установка и подключение

7.1 Внешний осмотр

Перед установкой проведите внешний осмотр инвертора на отсутствие повреждений полученных при транспортировке.

В случае обнаружения каких-либо повреждений упаковки и прибора, свяжитесь с компанией-перевозчиком или непосредственно с нашей компанией.

7.2 Выбор места установки

При выборе места установки необходимо учитывать следующее:

- ✤ Для обеспечения длительного срока службы инвертора, место установки должно быть всегда сухим.
- Выберите подходящее место для установки инвертора, где его не могут задеть прохожие; однако также учтите удобство установки и технического обслуживания.
- ✤ Убедитесь в том, что температура окружающей среды в месте установки инвертора находится в диапазоне -25°С ...+60°С.

Примечание: рекомендуется устанавливать инвертор в месте, где температура окружающей среды не превышает +45°С.

- ♦ Не устанавливайте инвертор на пластиковую или деревянную пластину во избежание возникновения шумов, лучше всего установить его на стену. В процессе работы инвертор издает шумы, силой ≤ 40 дБ.
- Убедитесь в том, что в месте установки нет вибраций.
- Убедитесь в том, что светодиоды и ЖК-дисплей хорошо видно в месте установки.
- В месте установки инвертора необходимо обеспечить хорошую вентиляцию.
- ✤ В рабочем состоянии инвертор вырабатывает тепло, не устанавливайте его на горючих предметах или возле мест хранения горючих материалов. Не устанавливайте инвертор возле взрывоопасных мест.

Требования к установке инвертора:

♦ Инвертор допускается устанавливать только в вертикальном положении, при этом угол наклона не должен превышать 15°(рисунок 11).

Рисунок 11

Убедитесь в том, что инвертор находиться на расстоянии как минимум 50см от другого оборудования.

7.3 Порядок установки

Установите крепеж из комплекта поставки, для этого:

1. Просверлите отверстия в стене Ø10 мм в соответствии с рисунком 12.

Рисунок 12

2. Удалите пыль из отверстий, вставьте дюбеля в стену, вкрутите 4 винта.

Рисунок 13

3. Повесьте инвертор на крепеж, сверху-вниз, проверьте обе стороны, убедитесь в том, что инвертор находится в правильном положении, и затяните болты.

Рисунок 14

7.4 Требования к подключению инвертора

Внимание:

- 1. Подключение должно осуществляться после того, как инвертор будет зафиксирован на стене.
- Убедитесь в том, что максимальное напряжение холостого хода и ток короткого замыкания солнечных батарей не превышают допустимого диапазона работы инвертора.
- Используйте для подключения фотоэлементов, аккумуляторов, коммунальной сети фотоэлектрические кабели в соответствии с таблицей 2. Кабели не должны подвергаться воздействию высоких температур, огня и воды.
- 4. В процессе подключения инвертора проверьте, чтобы не было замыкания между AC, DC и каким-либо источником питания.
- 5. Сначала определите полярность проводов и портов подключения, потом соедините инвертор и солнечные панели и коммунальную электросеть.

	Bxo	ц DC	Выход АС		
Модель	Сечение	Dпровода,	Сечение	D провода,	
	провода, мм ²	ММ	провода, мм ²	ММ	
AKSG-3.2K-DM	2,5-4	≤6	2,5-6	≤13	
AKSG-3.6K-DM	2,5-4	≤6	4-6	≤13	
AKSG-4K-DM	2,5-4	≤6	4-6	≤13	
AKSG-4.6K-DM	2,5-4	≤6	4-6	≤13	
AKSG-5K-DM	2,5-4	≤6	4-6	≤13	

Таблица 2 – Технические характеристики кабелей

Разрешается использовать только те кабели, которые соответствуют местным законам и нормам электрической безопасности.
Настоятельно рекомендуется установить автоматические выключатели или предохранители на входе DC и выходе AC для обеспечения безопасной установки и работы. Для защиты пользователя, установщика, выключатели DC и AC должны быть установлены в месте использования.

Рекоендуется использовать автоматические выключатели в соответствии с таблицей 3.

	Вход DC	Выход АС		
Модель инвертора	Автоматический	Автоматический		
	выключатель	выключатель		
AKSG-3.2K-DM	800B/16A	25A		
AKSG-3.6K-DM	800B/16A	32A		
AKSG-4K-DM	800B/16A	32A		
AKSG-4.6K-DM	800B/16A	32A		
AKSG-5K-DM	800B/16A	32A		

Таблица 3 – Технические характеристики автоматических выключателей

7.5 Порядок подключения

1. Подключение к коммунальной электросети

Сначала отключите коммунальной сеть с помощью автоматического выключателя или рубильника, убедитесь в том, что его никто случайно не включит, снимите крышку, открутив 4 винта спереди. Пропустите кабель через крышку и соедините с портами L, N, PE с помощью отвертки. Затяните винты.

2. Соединение с солнечной панелью

Для обеспечения безопасной установки выключите автоматические выключатели в цепях солнечной батареи и коммунальной сети.

Перед подключением инвертора к солнечным батареям, проверьте напряжение солнечных батарей, значение не должно превышать максимальное напряжение на входе инвертора. Перед подключением проверьте полярность подключения солнечных батарей: плюс солнечной батареи должен быть подключен к плюсу инвертора, минус – к минусу.

8. Поиск и устранение неисправностей

Техническое обслуживание инвертора очень легко осуществляется. В случае, если вы столкнулись с какой-либо проблемой, сначала просмотрите следующую таблицу, и, если вы не сможете решить свою проблему, свяжитесь с вашим дистрибьютором.

Далее перечислены стандартные вопросы, связанные с эксплуатацией инвертора.

Код ошибки	Неисправность	Методика поиска и устранения неисправности
F00-F03	Напряжение АС и частота слишком высокие или слишком низкие	 Проверьте напряжение сети на предмет соответствия местным стандартам безопасности. Проверьте выход АС на предмет корректного подключения. Убедитесь в том, что напряжение на выходе нормальное. Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F04-F05	Напряжение шины слизком высокое или слишком низкое	 Проверьте настройки режима входа. Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F06	Аномальное напряжение шины	 Проверьте настройки режима входа. Попробуйте перезапустить инвертор несколько раз с интервалом в несколько минут, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F07	Ошибка сопротивления изоляции	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Измеряйте сопротивление PV+/PV- земле, превышает ли оно 500КΩ. Если сопротивление ниже 500КΩ, свяжитесь с вашим местным дистрибьютором.
F08	Высокий ток на входе	 Проверьте настройки режима входа. Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F09	Высокий ток аппаратного обеспечения	 Попробуйте перезапустить инвертор несколько раз с интервалом в несколько минут, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F10	Высокий ток инвертора	 Попробуйте перезапустить инвертор несколько раз с интервалом в несколько минут, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F11	Высокий ток DC инвертора	 Попробуйте перезапустить инвертор несколько раз с интервалом в несколько минут, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.

Код ошибки	Неисправность	Методика поиска и устранения неисправности
F12	Высокая температура окружающей среды	 Отсоедините ФЭ вход, дайте инвертору остыть и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Проверьте температуру окружающей среды на предмет выхода за пределы рабочей температуры. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F13	Высокая температура радиатора	 Отсоедините ФЭ вход, дайте инвертору остыть и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Проверьте температуру окружающей среды на предмет выхода за пределы рабочей температуры. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F14	Сбой реле АС	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F15	Низкое напряжение ФЭ входа	 Проверьте конфигурацию ФЭ входа, один ФЭ вход не задействован, когда инвертор настроен на параллельный режим. Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F16	Дистанционное управление отключено	Инвертор находится в статусе отключенного дистанционного управления; инвертор можно включать/выключат дистанционно с помощью программного обеспечения для мониторинга.
F18	Ошибка связи последовательного периферийного интерфейса	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F20	Сильная утечка тока	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F21	Ошибка самодиагностики на предмет утечки тока	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F22	Ошибка согласованности напряжения	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F23	Ошибка согласованности частоты	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F24	Ошибка работы ЦОС	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.
F32	Потеря связи ЦОС	 Отсоедините ФЭ вход и перезапустите инвертор, чтобы проверить исчезла ошибка или нет. Свяжитесь с вашим местным дистрибьютором, если ошибка не исчезла.

9. Технические характеристики

Таблица У.1 Технические данные						
МОДЕЛЬ	KSG-3.2K -DM	KSG-3.6K -DM	KSG-4K -DM	KSG-4.6K -DM	KSG-5K -DM	
Параметры DC на входе						
Максимальная мощность ФЭ	2200	2900	4200	5200	5200	
(Вт)	3300	3800	4200	5200	5200	
Максимальное напряжение			500			
постоянного тока (В)			500			
Рабочий диапазон слежения за						
точкой максимальной			100-490			
мощности (В DC)						
Максимальный ток на входе с	11	13	13	13	13	
MPPT (A)	11	13	15	15	15	
Ток КЗ ФЭ-панелей (А)	2*13,2	2*15,6	2*15,6	2*15,6	2*15,6	
Диапазон слежения за точкой						
максимальной мощности	150-400	165-400	165-400	200-400	200-400	
(полная нагрузка) (В DC)						
Номинальное напряжение на			290			
входе (B DC)			380			
Количество входов			2			
Канал слежения за точкой			2			
максимальной модности			2			
Категория перенапряжения			II			
Максимальный обратный ток	272Λ in the second second $2 4 \kappa_0$					
инвертора на батарею	275 импульс (длительность – 2,4MC)					
Параметры АС на выходе						
Номинальная мощность на	3200	3680	4000	4600	5000	
выходе (Вт)	3200	5000	1000	1000	5000	
Номинальная мощность на	3200	3680	4000	4600	5000	
выходе (Вт)	2200	2000			2000	
Максимальный ток на выходе	14	16	17.5	20	22	
(A)			,e			
Встроенная защита от		10	•			
превышения выходного тока	16,8	19	20	23	25	
(A)						
Номинальное напряжение на	220/230					
выходе (ВАС)			50			
Номинальная частота сети, Гц		r	50			
Номинальный ток на выходе	14	16	17,5	20	22	
(A)			. 0.00			
Коэффициент мощности			>0,99			
Суммарное значение			-20/			
коэффициента нелинеиных			<3%			
искажении тока на входе	07.40/					
тиаксимальная эффективность	97,4%					
Европенская эффективность			90,9%			
Категория перенапряжения			111			
максимальный ток короткого	263А импульс (длительность – 2.8мс)				c)	
замыкания на выходе						
Окружающая среда			ID(5			
у ровень защиты			1P65			

Таблица 9.1 – Технические данные

Руководство по установке и эксплуатации

молель	KSG-3.2K	KSG-3.6K	KSG-4K	KSG-4.6K	KSG-5K	
модель	-DM	-DM	-DM	-DM	-DM	
Диапазон рабочей	25 + 60					
температуры (°С)			23 100			
Влажность		0-95%	без конденс	ации		
Высота	≤2000м					
Вентиляция	Естественное охлаждение					
Потребление в ночное время	<0,2					
(Вт)						
Шум	<35					
Связь						
ΨИЛ	4-строчный дисплей, контент меняется посредством нажатия					
лкд	кнопки					
Интерфейс передачи данных	RS232 & RS485 / WLAN (опция)					

Механические параметры					
Габариты (Ш*Г*В) мм	329*149*466				
Вес (кг)	14,7	15,1	15,1	15,7	15,7

Таблица 9.2 – Технические характеристики сети (одна фаза)

Технические	Диапазон	Диапазон частоты	Время ожидания
характеристики	напряжения на	на выходе (Гц)	загрузки (сек)
сети	выходе (В		
	переменного тока)		
Китай	187 - 252	48 - 50,5	60
Германия	196 - 262	47,5 - 51,5	60
Австралия	200 - 262	48 - 52	60
Италия	184 - 262	49,7 - 50,3	60
Испания	196 - 253	48 - 50,5	180
Великобритания	184 - 262	47 - 52	180
Венгрия	198 - 253	49,8 - 50,2	300
Бельгия	184 - 262	47,5 - 51,5	60
Новая	180 - 265	45 - 52	60
Зеландия			
Греция	184 - 262	49,5 - 50,5	180
Франция	184 - 262	47,5 - 50,4	60
Метро	200 - 240	49 - 51	60
Таиланд	198 - 242	48 - 51	60
Местные	150 - 280	45 - 55	60
60Гц	184 - 276	59,5 - 60,5	60

Если в процессе работы происходят такие ошибки как перенапряжение AC, недостаточное напряжение AC, превышение частоты AC или недостаточная частота AC, серия эта переходит в режим ожидания загрузки непосредственно после возврата сети в нормальное состояние.