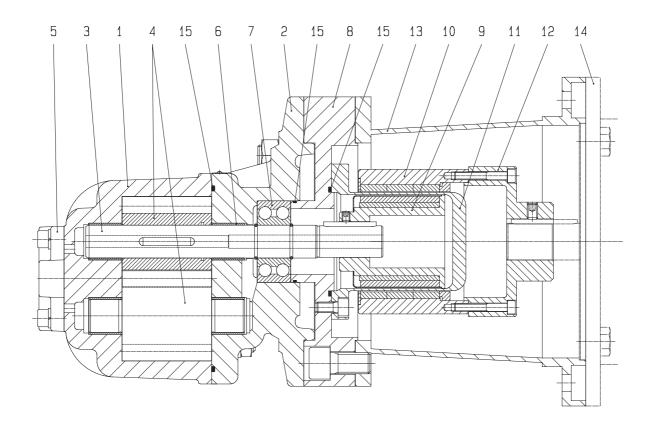
KRACHT


Transfer Gear Pumps

KF 3/100 ... KF 6/630

with magnetic coupling

Construction

- 1 Housing
- 2 Flange mounting cover 7 Outboard bearing
- 3 Drive shaft
- 4 Gearing
- 5 End cover
- 6 Plain bearing bush
- 8 Adapter flange
- 9 Inner rotor
- 10 Outer rotor
- 11 Split case
- 12 Flange hub
- 13 Bell housing
- 14 Driven motor
- 15 O-Ring

Function

Conventional sealing gaskets are pushed to their limits with different applications. Typical applications are found in polyurethane facilities, refrigerating machines and vacuum facilities. For these applications, you have the possibility to equip the KF 3/100... KF 6/630 with a magnetic coupling.

The magnetic coupling serves as a shaft seal and for the transmission of the torque. The outer rotor of the magnetic coupling is assembled on the engine shaft and the inner rotor is assembled directly on the pumping shaft. The torque is transmitted through the magnetic forces between the outer and inner rotor. Between the two rotors, you have the split case which hermetically seals the pump.

The magnetic coupling is used when an absolute sealing is required between the pumping room and the atmosphere, for example, in the case of a dosage of isocyanate, where the contact with air would lead to an unwanted cure of the medium. It can be used in vacuum operation – for example, filling brake fluid – in which an intrusion of air into the system is steadily prevented.

Also, a leak-free operation is ensured when operating in closed systems with high pressure on the pump inlet side. The magnetic coupling is predestined for dispensing dangerous and health hazardous mediums.

Technical Data

General Characteristics

Fixing type	flange type
Connection type	flange connection, welding connection, threaded connection
Direction of rotation	clockwise or anticlockwise
Mounting position	horizontal, vertical (shaft end facing downward / at the bottom)

Operating Characteristics

V _g =	100 / 112 / 125 / 150 / 180 / 200 / 250 / 315 / 400 / 500 / 630 cm ³ /r						
Suction s	ide						
P _{e min}	0.4 bar, vacuum facility - 0.92						
p _{e max}	16 bar (SN1/SS1/NN1)						
p _{e max}	p _{e max} 25 bar (SN2/SS2/NN2)						
p _{e max}	40 bar (SN3/SS3/NN3)						
Standstill							
P _{e min}	-1 bar						
P _{e max}	16 bar (SN1/SS1/NN1)						
P _{e max}	25 bar (SN2/SS2/NN2)						
p _{e max}	40 bar (SN3/SS3/NN3						
	Suction s Pe min Pe max Pe max Pe max Standstill Pe min Pe max Pe max	315 / 400 / 500 / 630 cm ³ /r Suction side p _{e min}					

Technical Data

Operating Characteristics

Speed	******	0 1/min 0 1/min
Viscosity	$v_{min} =$	2 mm ² /s 4 mm ² /s (Special version for low viscose medias) 0 mm ² /s
Fluid temperature pump	$\vartheta_{\text{m max}} = 100$ $\vartheta_{\text{m max}} = 100$	0°C (EPDM) 0°C (CR) 0°C (HNBR) 0°C (FKM)
Fluid temperature magnetic coupling		0°C Magnet material NdFeB 0°C Magnet material Sm2Co17
Ambient temperature	$\vartheta_{\text{u min}} = -20$ $\vartheta_{\text{u max}} = 60$)°C
Materials pump	Housing and cover Gearing Bearing bushes Seals	EN-GJL-250 (GG 25) EN-GJS-400-15 (GGG 40) on request 16 Mn Cr 5 DU (Multilayer plain bearings P10, DP4) optional Iglidur X EPDM, CR, HNBR, FKM, FEP
Materials magnetic coupling	Inner rotor	Hub made of stainless steel 1.4571 Magnets made of Sm2Co17 Magnet covering made of stainless steel 1.4571
	Split case	Flange made of stainless steel 1.4571 Pod made of stainless steel 1.4571 From construction size 75; alternatively of Hastelloy In ceramics (Zr02Mg0) on request
	Outer rotor	Hub made of 355J2G3 (St 52) Magnet made of Sm2Co17 or NdFeB

Selection Assistance

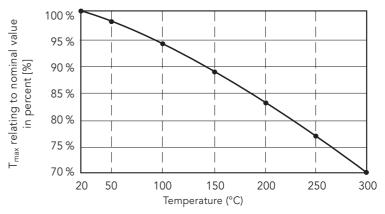
Pump / Nom. size	Coupling size	Stat. cutt-off torque T _{K max} . bei 20 °C
	MSB 75	24
KF3/.	MSC 75	40
KF3/	MSB 110	60
	MSC 110	95
KF 4/.	MSB 75	24
	MSC 110	95
	MSC 135	145
	MSB 110	60
KF5/.	MSC 110	95
	MSD 135	200
KF6/	MSC 135	145
Ι Ι Ι Ι Ι Ι	MSD 135	200

Design of the magnetic coupling

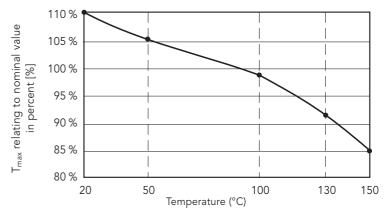
To design the magnetic coupling, the following information needs to be available:

- Pump size
- Pump pressure, operating and start-up pressure
- operating and starting viscosity
- Precise name of media required static seals
 (if possible) possibly main media characteristics
- Drive motor power
- Speed or speed range
- Switch on type direct or with frequency inverter, media and ambient temperature

The magnetic coupling should be designed by engineering. Here, the max. start-up torque needs to be considered and the media-specific characteristics in the fluid to be sealed need to be complied with. The split case implementation on the housing and the interior rotor on the shaft are then made based on the structural circumstances and expected number of pieces.

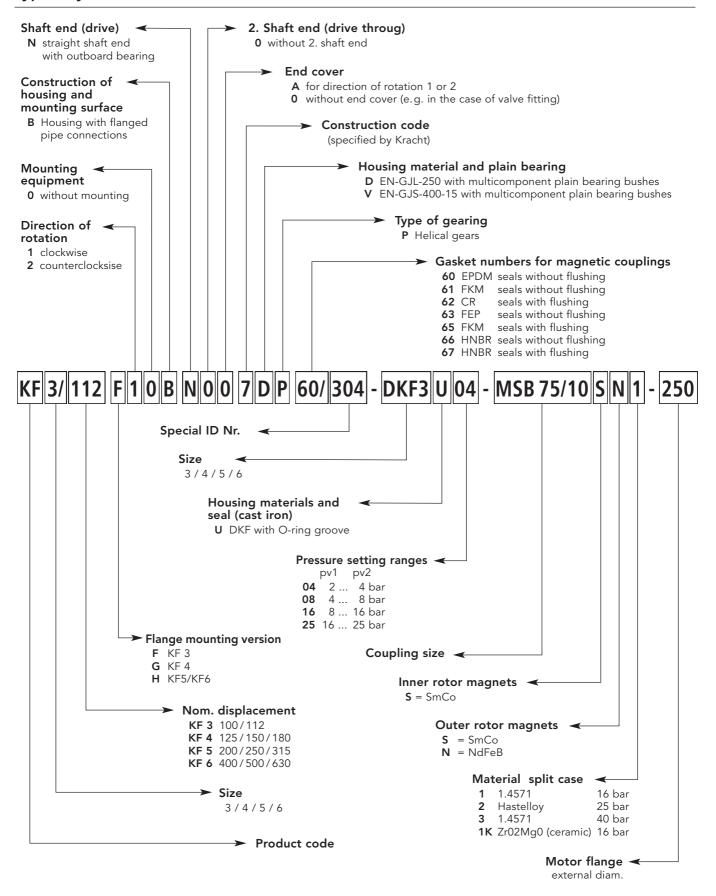

Improper design of the sensitive seal/torque transmission system can lead to irreparable damage.

Do not mix up magnetic coupling with a Rotex coupling!


Characteristics

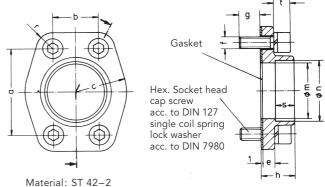
Pump	Nom. displace- ment	Geom. displace- ment	Operating pressure	Max. pressure	Speed	range
		V _g cm ³ /r	p _b bar	p _{max.} bar	n _{min} 1/min	n _{max} 1/min
3 /.	100	100.8	25	30	200	2000
37.	112	112.6	25	25	200	2000
	125	129	25	40	200	2000
4 /.	150	153	25	30	200	2000
	180	184	25	25	200	2000
	200	204	25	30	200	2000
5 /.	250	255	20	25	200	2000
	315	321	16	20	200	2000
	400	405	25	30	200	2000
6 /.	500	505	20	25	200	2000
	630	629	16	20	200	2000

Torque reduction with temperature increase


Torque reduction with increased temperature for SmCo magnets on internal and external rotor.

Torque reduction with increased temperature for SmCo magnets on internal rotor, NdFeB magnets on external rotor.

Type Key

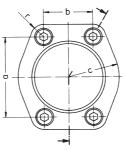

Accessories, Flanged Pipe Connections

Welding connector KF 3, KF 4

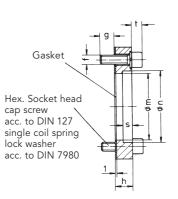
Ordering example

2 pieces welding connector KF 4

complete welding connector with gasket and screws for the size KF4


Material: 31 42-2

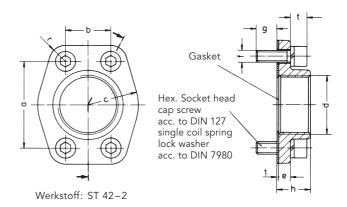
Welding connector KF 5, KF 6


Ordering example

2 pieces welding connector KF 5

complete welding connector with gasket and screws for the size KF 5/250

Material: ST 42-2


Size Nom- displace- ment	a	b	С	е	f	g	h	m	n	r	S	t	Screws DIN 912-8.8	Nom- size	Pipe external ∅	Weight kg
KF3	69.9	35.7	40	9	M10	13	26	45	49	13	15	_	M10×25	40	48.3	0.44
KF 4	77.8	42.9	50	9	M12	17	26	57	61	13	15	_	M12x30	50	60.3	0.63
KF 5 / 200	88.9	50.8	55	-	M12	16	18	68	77	15	12	12	M12x35	65	76.1	0.86
KF 5 / 250 / 315	106.4	61.9	65	-	M12	16	18	82	90	15	12	12	M12×35	80	88.9	1.2
KF 6	130.2	77.8	80	_	M16	24	24	107	115.3	20	15	20	M16×50	100	114.3	2.5

Welding connector KF 3, KF 4

Ordering example

2 pieces welding connector KF 4

complete welding connector with gasket and screws for the size ${\sf KF\,4}$

Product Portfolio

Transfer Pumps

Transfer pumps for lubricating oil supply equipment, low pressure filling and feed systems, dosing and mixing systems.

Mobile Hydraulics

Single and multistage high pressure gear pumps, hydraulic motors and valves for construction machinery, vehicle-mounted machines.

Flow Measurement

Gear and turbine flow meters and electronics for volume and flow metering technology in hydraulics, processing and laquering technology.

Industrial Hydraulics / Test Bench Construction

Cetop directional control and proportional valves, hydraulic cylinders, pressure, quantity and stop valves for pipe and slab construction, hydraulic accessories for industrial hydraulics (mobile and stationary use).

Technology Test benches / Fluid Test benches.

KF3-KF6 with magn. coupl./GB/02.08

