Technical Information Barrier RB223

One or two-channel barrier

Loop-powered barrier for the safe separation of 4 to 20 mA standard signal circuits

Application

• Separation of active 0/4 to 20 mA signals from transmitters, valves and adjusters

Your benefits

- Compact side-by-side housing
- Space-saving one-channel and two-channel version
- No power supply necessary
- International Ex approvals ATEX, FM, CSA
- Can be used up to SIL3
- Bidirectional HART® transmission
- Communication sockets for HART® + integrated HART® resistor for sensor configuration

Function and system design

Measuring principle

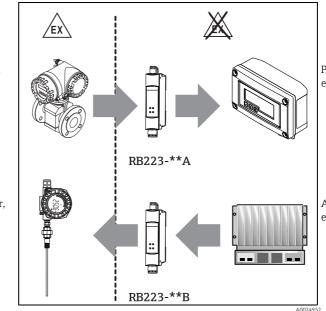
The passive barrier is used for galvanic isolation of active signal loops (0/4 to 20 mA) in three applications:

- Transmission from non-Ex-areas to Ex-areas, e.q. for active actuators, controllers or indicators
- Transmission from Ex-areas to non-Ex-areas for the linking of active, intrinsically safe loops in the Ex-area to a PLC
- Transmission of signals (0/4 to 20 mA) from the Ex-area to the non-Ex-area when an intrinsically safe transmitter in the Ex-area is supplied by a not intrinsically safe loop power supply in the non-

The device has an analog input and an intrinsically safe analog output or an output and an intrinsically safe input. As an option the device is available as a 2-channel version. The barrier is used for intrinsically safe operation of sensors, valves and actuators.

The device is supplied from the current loop without a separate power supply.

Measuring system


The standard instrument has one analog input and one analog output. A two-channel instrument with two analog inputs and two analog outputs is available as an option.

Ex to nonEx:

Active 4-wire sensor, e.g. Promag 50

NonEx to Ex:

Passive 2-wire sensor. e.g. TMT162

Passive current input, e.g. RIA15

Active current input, e.g. SPS

Input

Direction of power transmission nonEx \rightarrow Ex

- 0/4 to 22 mA, (for specified accuracy)
- 0 to 40 mA operating range
- Max. effective voltage < 26 V for specified accuracy
- $I_{max} = 100 \text{ mA}$ (short-circuit current of protective diode in event of overvoltage)
- $U_{\text{max}} = 30 \text{ V}$ (limiting voltage of protective diode)
- Reverse polarity protection
- $R_i < 400 \Omega$ (without HART® resistor 232 Ω)

Direction of power transmission $Ex \rightarrow nonEx$

- 0/4 to 22 mA, (for specified accuracy)
- Intrinsically safe [Ex ia] as per ATEX, FM, CSA
- 0 to 40 mA operating range
- Reverse polarity protection
- $R_i < 120 \Omega$ (without HART® resistor 232 Ω)
- Max. effective voltage < 26 V

Output

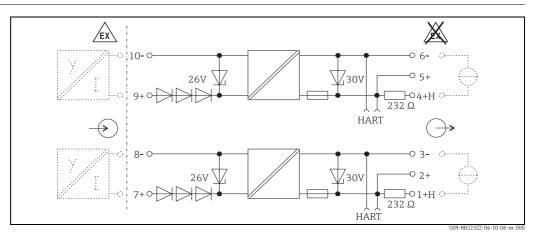
Direction of power transmission nonEx → Ex

- 0/4 to 22 mA, (for specified accuracy)
- 0 to 40 mA operating range (max. current depends on the load)
- Max. load (load resistance) = 0 to 600 Ω
- Intrinsically safe [Ex ia] as per ATEX, FM, CSA

Direction of power transmission $Ex \rightarrow nonEx$

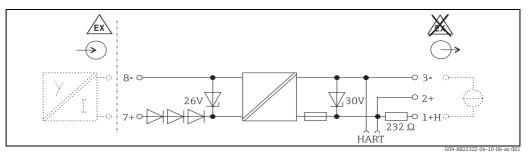
- 0/4 to 22 mA (for specified accuracy)
- 0 to 40 mA operating range (max. current depends on the load)
- Max. load (load resistance) = 0 to 600 Ω

Galvanic isolation

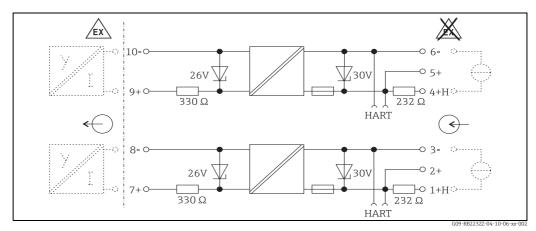

Testing voltage:

> 1.5 kV AC between input and output

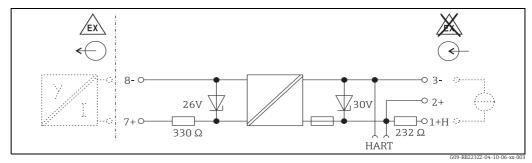
> 1.5 kV AC between the channels


Power supply

Electrical connection



RB223 connection, Ex-nonEx two-channel


3

RB223 connection, Ex-nonEx one-channel

RB223 connection, nonEx-Ex two-channel

RB223 connection, nonEx-Ex one-channel

Supply voltage	The device is powered from the standard 0/4 to 20 mA current loop.
Starting current (intrinsic consumption)	< 50 μΑ
Voltage drop	< (1.9 V + 400 Ω x current loop) for nonEx \rightarrow Ex < (3.9 V + 120 Ω x current loop) for Ex \rightarrow nonEx
Power loss	< 0.2 W for 20 mA (per channel) without HART® resistor < 0.3 W for 20 mA (per channel) with HART® resistor

Performance characteristics

Current transmission	$<\pm~10~\mu A + 0.15\%$ of measured value
Load error	\leq 0.02 % of measured value/100 Ω
Temperature drift	≤ ±0.01 %/10 K (0.0056%/10 °F)
Residual ripple at output	< 30mV $_{eff}$ for 20 mA loop current and 600 Ω load

Transmission behavior

HART® protocol Bidirectional transmission possible

Step-function response

Settling time (10% to 90% of full scale value)

< 0.5 ms for 500 Ω load for nonEx \rightarrow Ex < 0.3 ms for 500 Ω load for Ex \rightarrow nonEx

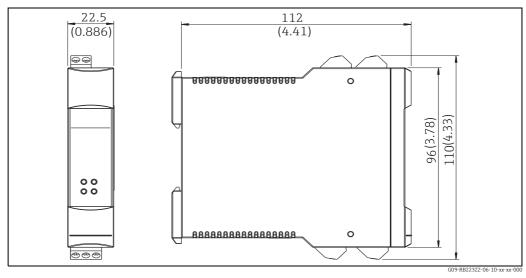
Frequency response

Large signal limit frequency

650 Hz for 500 Ω load for nonEx \rightarrow Ex 1300 Hz for 500 Ω load for Ex \rightarrow nonEx

Installation

Mounting	Mounting in a cabinet on a mounting rail TS 35 as per IEC 60715.
Orientation	No restrictions
Installation instructions	Installation and setup conditions as per IEC 60715.


Environment

Ambient temperature range	-20 to +60 °C (-4 to +140 °F)
Storage temperature	-20 to +80 °C (-4 to 176 °F)
Installation height	As per IEC 61010-1: < 3000 m above MSL
Climate class	As per IEC 60654-1 Class B2
Degree of protection	IP 20
Relative humidity	< 95 % (without condensation)
Electrical safety	Protection class III, pollution degree 2, overvoltage protection category II
Electromagnetic compatibility (EMC)	Interference immunity as per EN 61326 - series (industry) and NAMUR NE21

Mechanical construction

Design, dimensions

Housing for top-hat rail as per IEC 60715 TH35:

Dimensions of RB223 in mm (in)

Weight	Approx. 150 g (5.29 oz.)
Material	Housing: plastic PC, UL 940
Terminals	 Coded, pluggable screw terminal, core size 1.5 mm² solid, or 1.0 mm² strand with ferrule Communication socket on the front via 2 mm jack plug

Human interface

Remote operation

HART® communication:

Communication signals are transmitted bidirectionally.

Communication resistor:

Resistor for HART[®] communication 232 Ω installed.

Communication sockets:

Access for HART® communicator, e.g. DXR-275

Pay attention to voltage drop!

Certificates and approvals

CE mark	Directive 2004/108/EC and 2006/95/EC
Ex approval	ATEX, FM and CSA approved associated apparatus
SIL	Can be used up to SIL3

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser web site: www.endress.com → Choose your country → Products → Select measuring technology, software or components → Select product (picklists: measurement method, product family etc.) → Device support (right-hand column): Configure the selected product → The Product Configurator for the selected product is opened.
- From your Endress+Hauser Sales Center: www.addresses.endress.com

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories


Accessories

The following accessories are available:

Order code	Accessory
51002468	Protective housing IP66 for field mounting

Documentation

- Operating Instructions RB223 (BA00239R/09)
- ATEX Safety Instructions (XA00068R/09)
- Brochure "System Components and Data Managers" (FA00016K/09)
- SIL Safety Manual (SD00022R/00)
- Additional Ex approvals, FM/CSA Control Drawings

