СВАРОЧНЫЙ ПОСТ НА БАЗЕ «ОССД-300», ДЛЯ СВАРКИ В РЕЖИМЕ ТІG, ММА, НА ПЕРЕМЕННОМ И ПОСТОЯННОМ ТОКЕ

1 Назначение и состав сварочного поста

Сварочный пост на базе «ОССД-300» предназначен для сварки в среде аргона и сварки штучными электродами, на переменном и постоянном токе. Пост позволяет производить бесконтактный поджиг сварочной дуги в режиме ТІG, стабилизацию горения дуги в режиме ММА, регулировку величины сварочного тока, работать от сети 220В/380В.

В состав сварочного поста входят:

Осциллятор стабилизатор сварочной дуги ОССД-300	1 шт.
Сварочный трансформатор ТОР-250	1 шт.
Сетевой кабель ПВС 3х2,5	10 м
Кабель сварочный КГ1-25	8м*
Электрододержатель 300А	1 шт.
Зажим массы 300А	1 шт.
Реостат балластный РБ-302	1 шт.
Горелка ABITIG-26	1 шт.

 $^{^*}$ - для удобства пользователя сварочный кабель разделен на четыре части: кабель электрододержателя - 4 м, кабель зажима массы - 4м, перемычка силовая — 2шт. по метру.

2 Порядок работы со сварочным постом

2.1 Подключение сварочного поста к питающей сети

Сварочный пост может подключаться к двум фазам переменного сетевого напряжения 380В либо к одной фазе 220В. При подключении к сети 220 В трансформатор подключается посредством клемм «ОБЩ» и «220 Р» сетевые концы ОССД-300 необходимо подключить к тем же сетевым клеммам трансформатора (см рисунок 1), при подключении к сети 380 В трансформатор необходимо подключать посредством клемм «ОБЩ» и «380 Р», ОССД сетевые концы ОССД подключаются к клеммам «ОБЩ» и «220 Р» в соответствии с рисунком 2.

Клеммная колодка на трансформаторе

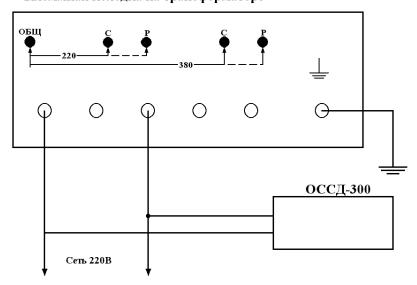


Рисунок 1 – Подключение сварочного поста к сети 220 В

Клеммная колодка на трансформаторе

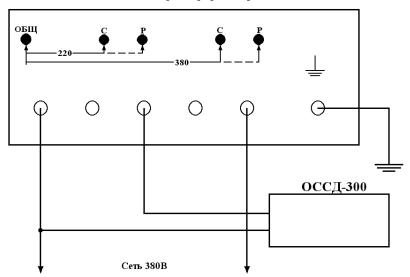


Рисунок 2 – Подключение сварочного поста к сети 380 В

2.2 Работа сварочного поста

ВНИМАНИЕ!

<u>При работе ОССД-300 между его выводами возникает высокое</u> напряжение

Особое внимание нужно обратить на необходимость установки защитного конденсатора. Если конденсатор установлен не будет произойдет повреждение вторичной обмотки сварочного трансформатора

Для сварки неплавящимся электродом в среде аргона на переменном токе необходимо собрать рабочее место в соответствии с рисунком 3. а для постоянного тока в соответствии с рисунком 5.

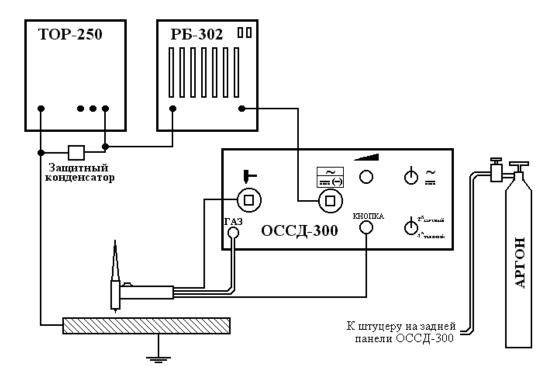


Рисунок 3 – Рабочее место для сварки в среде аргона на переменном токе

Подробная работа с ОССД-300 описана в его собственной инструкции, которая прилагается отдельно.

Для сварки штучным плавящимся электродом на переменном токе необходимо собрать рабочее место в соответствии с рисунком 4. на постоянном токе в соответствии с рисунком 6. На лицевой панели ОССД-300 переключатель тип сварки нужно перевести в положение « \sim »,переключатель режим кнопки в положение « 2^X тактный», на разъем «КНОПКА» надеть заглушку для режима ММА.

При вставленной заглушке ОССД-300 работает постоянно.

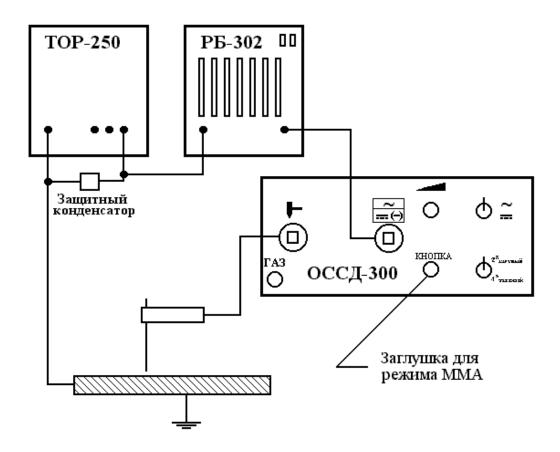


Рисунок 4 — Рабочее место для сварки штучным электродом на переменном токе

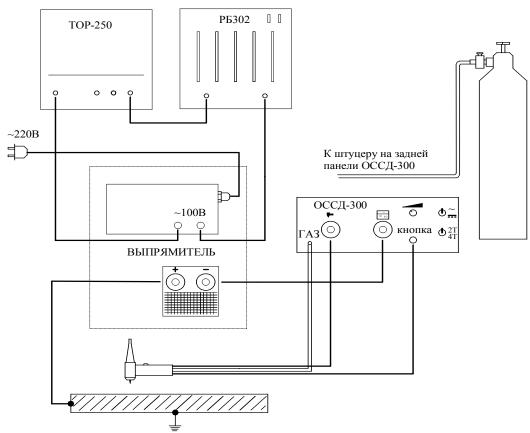


Рисунок 5 – Рабочее место для сварки в среде аргона на постоянном токе

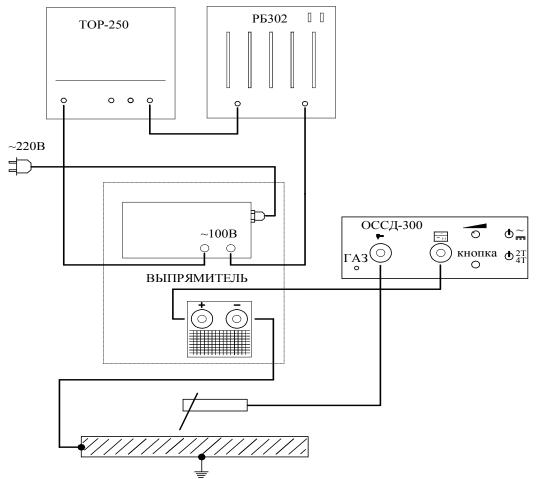


Рисунок 6 — Рабочее место для сварки штучным электродом на постоянном токе

2.3 Регулировка сварочного тока

Сварочная характеристика может формироваться следующим образом:

- 1) переключением выводов вторичной обмотки сварочного трансформатора;
- 2) переключением ножей реостатного балласта;
- 3) комбинацией этих методов.

Ступени выводов вторичной обмотки показаны на рисунке 5 и расположены в порядке возрастания сварочного тока.

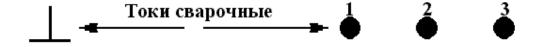


Рисунок 5 – Расположение ступеней вторичной обмотки

На ножах реостатного балласта стоят надписи которым соответствует ток при 30 В приложенного напряжения

