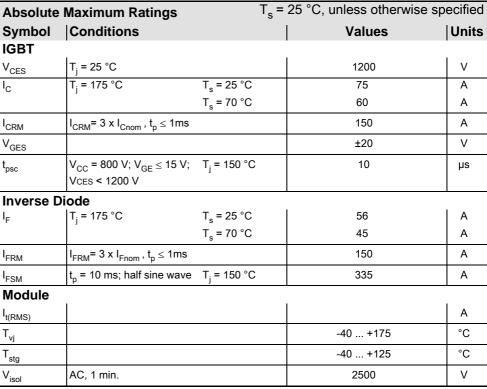
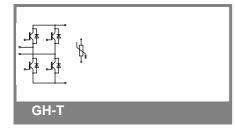


IGBT module

SK50GH12T4T


Target Data

Features


- One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- New IGBT4 Technology
- · CAL 4 technology FWD
- Integrated NTC Temperature sensor

Typical Applications*

Voltage regulator

Characteristics		T_c = 25 °C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.7 \text{ mA}$		5	5,8	6,5	V		
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,01	mA		
		T _j = 125 °C		0,4		mA		
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 125 °C			600	nA		
V_{CE0}		T _j = 25 °C		0,8	0,9	V		
		T _j = 150 °C		0,7	0,8	V		
r _{CE}	V _{GE} = 15 V	T _j = 25°C		20		mΩ		
		T _j = 150°C		30		mΩ		
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			1,8	2	V		
		$T_j = 150^{\circ}C_{chiplev.}$		2,2	2,4	V		
C _{ies}				5,54		nF		
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,41		nF		
C _{res}				0,32		nF		
Q_G	V _{GE} = -7V+15V			375		nC		
R _{Gint}	T _j = 25 °C			4		Ω		
t _{d(on)}				63		ns		
t _r	$R_{Gon} = 32 \Omega$	$V_{CC} = 600V$		65		ns		
E _{on}	di/dt = 920 A/μs	I _C = 50A		8,3		mJ		
t _{d(off)}	$R_{Goff} = 32 \Omega$	T _j = 150 °C		521		ns		
t _f				80		ns		
E _{off}				5		mJ		
$R_{th(j-s)}$	per IGBT			0,65		K/W		

IGBT module

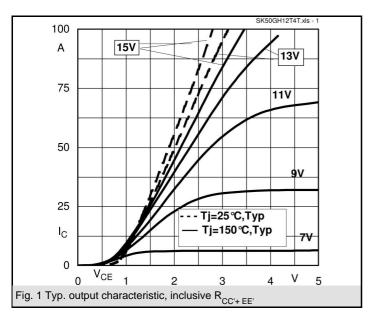
SK50GH12T4T

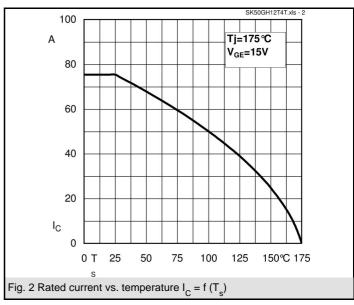
Target Data

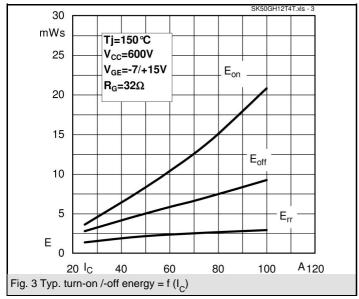
Features

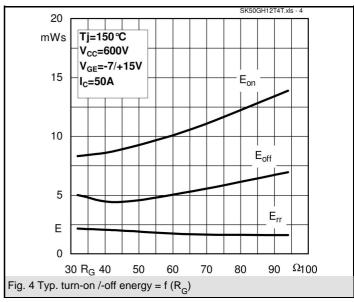
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- New IGBT4 Technology
- · CAL 4 technology FWD
- Integrated NTC Temperature sensor

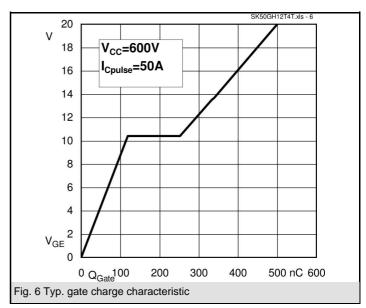
Typical Applications*

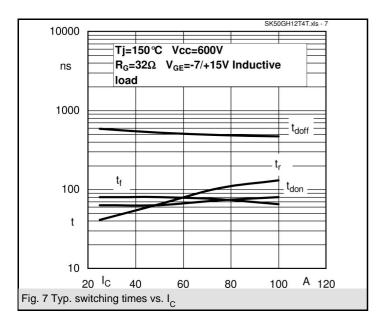

Voltage regulator

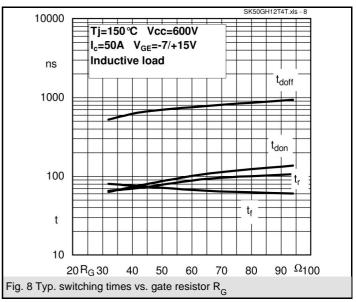

Characteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,2	2,5	V				
		$T_j = 150 ^{\circ}C_{chiplev.}$		2,1	2,45	V				
V _{F0}		T _j = 25 °C		1,3	1,5	V				
		T _j = 150 °C		0,9	1,1	V				
r _F		T _j = 25 °C		18		mΩ				
		T _j = 150 °C T _j = 150 °C		24		$m\Omega$				
I _{RRM}	I _F = 50 A	T _j = 150 °C		30		Α				
Q_{rr}	di/dt = 920 A/μs			7,2		μC				
E _{rr}	V _{CC} =600V			2,15		mJ				
$R_{th(j-s)D}$	per diode			1,05		K/W				
Freewheeling Diode										
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_j = {^{\circ}C_{chiplev.}}$				V				
V_{F0}		T _j = °C				V				
r _F		$T_j = ^{\circ}C$ $T_i = ^{\circ}C$				V				
I _{RRM}	I _F = A	T _j = °C				Α				
Q_{rr}						μC				
E _{rr}						mJ				
	per diode					K/W				
M_s	to heat sink		2,5		2,75	Nm				
w				60		g				
Temperature sensor										
R ₁₀₀	T_s = 100°C (R_{25} =5kΩ)			493±5%		Ω				

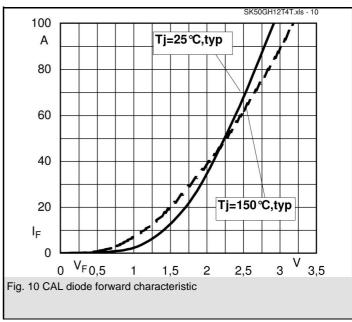

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

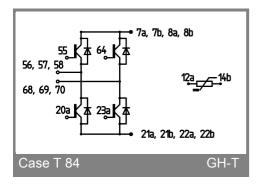

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











5 27-04-2009 DIL © by SEMIKRON