DAD INTERNATIONAL

Pressure Filter MDF up to 280 l/min, up to 280 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. Standard equipment:

- without bypass valve
- connection for a clogging indicator in filter head
- installation holes in the filter head

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724 ISO 3968
- ISO 11170
- ISO 16889

Filter elements are available with the following pressure stability values:

Optimicron® (ON): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W): 20 bar Stainless steel fibre (V): 210 bar

1.3 FILTER SPECIFICATIONS

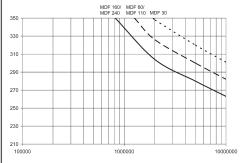
Nominal pressure	210 bar or 280 bar
Fatigue strength	min. 5 million cycles at 1.2 times nominal pressure
	(for other pressures, see Point 1.8)
Temperature range	-30 °C to +100 °C
	(-30 °C to -10 °C: p _{max} = 140 bar)
Material of filter head	EN-GJS-400-15
Material of filter bowl	Steel
Type of indicator	VM (Diff. pressure indicator up to 210 bar operating pressure) VD (Diff. pressure indicator up to 420 bar operating pressure)
Pressure setting of the clogging indicator	5 bar (others on request)
Bypass cracking pressure (optional)	6 bar (others on request)

1.4 SEALS

NBR (=Perbunan)

1.5 INSTALLATION

Inline filter


1.6 SPECIAL MODELS AND **ACCESSORIES**

- Bypass valve built into the head, separate from the main flow
- Oil drain plug
- Seals in FPM, EPDM
- Test and approval certificates

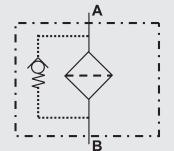
1.7 SPARE PARTS

See Original Spare Parts List

1.8 FATIGUE STRENGTH

1.9 CERTIFICATES AND APPROVALS

- Test certificate 2.2
- Manufacturer's certificate O and M to DIN 55350, part 18 Other certificates on request


1.10 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.11 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

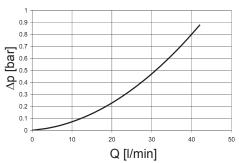
E 7.502.4/11.16

3. FILTER CALCULATION / **SIZING**

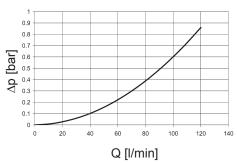
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{total} &= \Delta p_{housing} + \Delta p_{element} \\ \Delta p_{housing} &= (see\ Point\ 3.1) \\ \Delta p_{element} &= Q \cdot \frac{SK^*}{1000} \cdot \frac{viscosity}{30} \end{array}$$

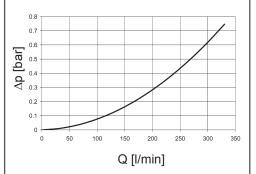
(*see point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>


3.1 ∆p-Q HOUSING CURVES BASED **ON ISO 3968**

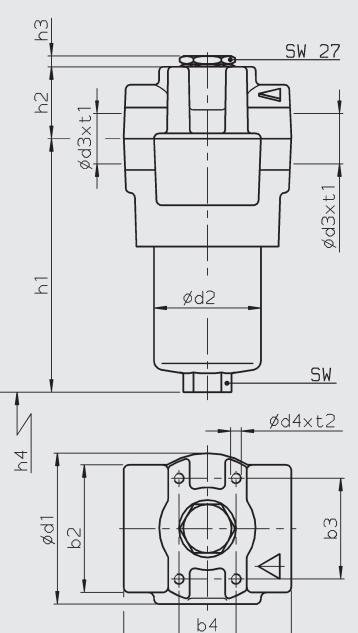
The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

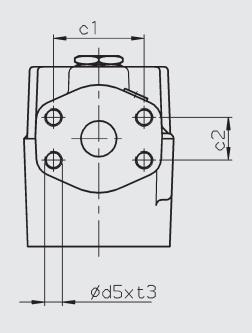

MDF 30

MDF 60-110

MDF 160-240

3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.


MDF	ON													
	1 µm	3 µm	5 µm	10 µm	15 µm	20 μm								
30	77.8	63.9	43.3	22.8	14.0	11.3								
60	53.5	26.0	18.3	12.1	9.78	6.32								
110	25.8	13.4	9.61	6.06	4.63	2.99								
160	18.5	11.0	7.70	4.10	3.71	3.18								
240	11.5	6.90	5.34	3.19	2.44	2.10								

MDF	V			'	W	ВН4НС								
	3 µm	5 µm	10 µm	20 µm	-	3 µm	5 µm	10 µm	20 µm					
30	18.4	13.5	7.5	3.6	3.030	91.2	50.7	36.3	19.0					
60	16.0	9.3	5.4	3.3	0.757	58.6	32.6	18.1	12.2					
110	8.2	5.6	3.3	2.2	0.413	25.4	14.9	8.9	5.6					
160	4.6	3.2	2.3	1.4	0.284	16.8	10.4	5.9	4.4					
240	3.1	2.5	1.7	1.1	0.189	10.6	6.8	3.9	2.9					

4. DIMENSIONS

MDF	b1	b2	b3	b4	C1	C2	d1	d2	d3	d4	d5	h1	h2	h3	h4	SW	t1	t2	t3	Weight incl. element [kg]	Volume of pressure chamber [I]
30 (B/C)	71	55	45	30	-	-	69	45	G½-G¾	M5	-	133	38	6	75	19	14–17	6	-	2.3	0.1
30 (H)	70	55	45	30	38.1	17.5	69	45	SAE DN 13	M5	M8	133	38	6	75	19	-	6	12	2.3	0.1
60 (C/D)	90	71	56	32	-	-	86	59	G¾–G1	M6	-	138	40	6	85	27	17–19	9	-	4.1	0.18
60 (I)	89	71	56	32	47.6	22.2	86	59	SAE DN 20	M6	M10	138	40	6	85	27	-	9	15	4.1	0.18
110 (C/D)	90	71	56	32	-	-	86	59	G¾–G1	M6	-	206	40	6	85	27	17–19	9	-	4.6	0.32
110 (I)	89	71	56	32	47.6	22.2	86	59	SAE DN 20	M6	M10	206	40	6	85	27	-	9	15	4.6	0.32
160 (E/F)	133	95	85	35	-	-	119	84	G11/4-G11/2	M10	-	187	47	6	105	32	21–23	14	-	9.6	0.55
160 (J)	133	95	85	35	58.7	30.2	119	84	SAE DN 32	M10	M10	187	47	6	105	32	-	14	15	9.6	0.55
240 (E/F)	133	95	85	35	-	-	119	84	G11/4-G11/2	M10	-	246	47	6	105	32	21–23	14	-	10.5	0.79
240 (J)	133	95	85	35	58.7	30.2	119	84	SAE DN 32	M10	M10	246	47	6	105	32	-	14	15	10.5	0.79

(.) = connection size (see Point 2.1: Type and size of connection)

NOTE

The information in this brochure relates to the operating conditions and applications described.

b1

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC Filtertechnik GmbH Industriegebiet

D-66280 Sulzbach/Saar Tel.: 0 68 97 / 509-01

Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-Mail: filter@hydac.com