
СЕРИЯ N-HEAT[®]

Электрические нагревательные кабели

Mexans

Нагревательные кабели Nexans

Нагревательные кабели Nexans всегда считались высококачественными изделиями, отличающимися простотой монтажа, надежностью и безопасностью.

Краткое содержание

Все изделия разработаны и испытаны в соответствии с международными стандартами, такими как IEC и CENELEC, и отвечают всем требованиям Европейской директивы по низковольтному оборудованию. Продукция сертифицирована в соответствии со стандартом по системам менеджмента качества ISO 9001 и стандартом по системам экологического менеджмента ISO 14001. Компания Nexans предоставляет 20-летнюю гарантию на свои резистивные нагревательные кабели и 5-летнюю гарантию на свои саморегулирующиеся нагревательные кабели. В настоящем справочнике рассматривается применение нагревательных кабелей и приводится информация об изделиях компании Nexans Norway AS. Изделия могут дополнительно сертифицироваться на соответствие принятым местным нормам и законодательству. Данный справочник содержит только общие рекомендации применимые в любой стране. Также он содержит указания на некоторые нормы и правила в Украине. При использовании справочника следует руководствоваться и другими национальными нормативами и требованиями по монтажу.

Оглавление

Часть 1

Теплые полы

- **07** Нагревательный кабель для обогрева помещений
- **08** Тепловые потери и тепловой режим помещений
- 09 Проектирование и расчеты
- 10 Выбор терморегулятора
- **11** Формулы, обозначения и единицы измерения

Часть 2

Применение

- 13 Обогрев бетонных полов
- 14 Обогрев пола в ванных комнатах
- 15 Обогрев деревянных полов на лагах
- **16** Технические решения для проектов реконструкции
- 18 Система снеготаяния
- **19** Нагревательные кабели на уличных лестницах
- 20 Система антиобледенения водосточных желобов и водостоков крыш
- **23** Защита труб и резервуаров от промерзания
- 26 Обогрев полов морозильных камер
- 26 Обогрев спортивных площадок и полей
- 27 Сушка бетонных конструкций

Качество

Нагревательные кабели Nexans соответствуют самым высоким стандартам качества и имеют региональные сертификаты на всех крупных рынках сбыта. Все наши резистивные нагревательные кабели обеспечиваются 20-летней гарантией при условии проведения монтажа квалифицированным персоналом и в соответствии с нашими инструкциями по монтажу.

Инновация

Нагревательные кабели Nexans являются норвежским изделием и изобретением. Мы производим нагревательные кабели на протяжении 90 лет. И все эти годы мы совершенствуем свою продукцию в соответствии с изменяющимися требованиями рынка и внедряем самые передовые технические решения.

Примером может служить наше уникальное скрытое безмуфтовое соединение SPLICE, обеспечивающее бесшовное сращивание нагревающего элемента и силовой части кабеля. Другой пример - усовершенствованный экран кабеля MILLIMAT и наши надежные концевые муфты, предотвращающие проникновение влаги.

Информация о продукции

Наш справочник дает рекомендации и предоставляет общую информацию по нагревательным кабелям, и мы надеемся, что он послужит удобным источником информации для конечного пользователя, электриков, монтажников и проектантов.

В настоящем справочнике вы найдете сведения о «тёплых полах» и о многих других типах применения нагревательных кабелей, в том числе и о системах снеготаяния, и защите труб от промерзания. Выбираете ли вы наши обычные нагревательные кабели, или один из наших тонких нагревательных матов, - вы делаете верный выбор, отдавая предпочтение продукции Nexans.

Вы можете также посетить наш сайт **rdim.ua**, и получить более подробную информацию о нагревательных кабелях и их применении.. Наша продукция непрерывно совершенствуется, и компания Nexans Norway AS оставляет за собой право вносить изменения в свою продукцию без предварительного уведомления.

Часть 3

Техническая информация о продукции

Резистивные нагревательные кабели

- 29 N-HEAT® TXLP/2R CLASSIC Комплект двужильного нагревательного кабеля для обогрева пола
- **30** N-HEAT® TXLP/1 Комплект одножильного нагревательного кабеля для обогрева пола
- 31 N-HEAT® MILLIMAT™
 Нагревательный мат на основе тонкого двужильного кабеля
- 33 N-HEAT® TXLP DRUM Одножильный нагревательный кабель общего назначения, поставляемый на барабанах
- 34 N-HEAT® TXLP TWIN DRUM Двужильный нагревательный кабель общего назначения, поставляемый на барабанах
- **36** N-HEAT® TXLP/1, 28 Вт/м Комплект одножильного кабеля для систем снеготаяния
- **37** N-HEAT® TXLP/2R DEFROST SNOW Комплект двужильного нагревательного кабеля для систем снеготаяния

- **38** N-HEAT® DEFROST PIPE / GUTTER Саморегулирующийся нагревательный кабель общепромышленного применения
- 40 N-HEAT® DEFROST WATER и комплекты DEFROST WATER KIT Саморегулирующийся нагревательный кабель для монтажа в трубопроводах холодного водоснабжения
- 41 СИСТЕМЫ УПРАВЛЕНИЯ
- 42 Встраиваемые термостаты
- **45** Термостаты с креплением на DIN-рейку
- 46 Датчики температуры
- 47 Датчики температуры и влаги
- **48** АКСЕССУАРЫ / Системные принадлежности

Часть 4

Приложение

- **50** Таблицы выбора нагревательных кабелей TXLP/1 и TXLP/2R
- **51** Таблица выбора кабеля TXLP DRUM (230 B)
- **52** Таблица выбора кабеля TXLP DRUM (400 B)

Электрические схемы подключения нагревательных кабелей

- **53** Пример 1.
 - Схема подключения "Треугольник"
- **53** Пример 2. Схема подключения "Звезда"

к регулятору

- **54** Пример 3. Подключение кабелей на 230В
- **54** Пример 4. Подключение кабелей с током больше 16A через контактор
- 55 Пример 5. Термостат ETO2, две системы - 1 и 2, два датчика влажности/температуры ETOG и ETOR в любой комбинации
- 56 Пример 6. Термостат ETO2, две системы - 1 и 2, два датчика влажности ETOR
- **57** Пример 7. Термостат ETR2, с датчиком влажности/температуры грунта
- 58 Пример 8. Термостат ETR2, с двумя датчиками, влажности на кровле и температуры воздуха

Часть 1 Тёплые полы

Нагревательный кабель для обогрева помещений

Во всем мире электричество используется в качестве самого распространенного источника энергии для отопления зданий. Поскольку мировые запасы нефти и газа неуклонно истощаются, в большинстве стран ищут новые обновляемые экологичные источники энергии. Некоторыми возможными решениями являются ветро- и гелиоэнергетика, атомная энергетика и гидроэнергетика. Эти источники служат для производства электроэнергии уже сейчас, а в будущем могут оказаться единственно способом производства электроэнергии.

Преимущества подогрева полов электрическими кабельными системами

Использование электричества для отопления дома приобретает все большую популярность. Если сделан выбор в пользу электричества, используемого в качестве источника энергии для отопления дома, возникает множество вариантов подогрева. Для многих, по очевидным причинам, естественным выбором оказывается «теплый пол». Такая отопительная система невидима, она освобождает стены от настенных обогревателей; она не имеет запаха, и позволяет легко регулировать теплоотдачу, увеличивая или уменьшая нагрев, и обеспечивая, таким образом, экономию электроэнергии. Кроме того, можно получить дополнительную экономию электроэнергии, используя современный терморегулятор с расширенными функциями управления. Электрический обогрев пола обладает многими преимуществами в сравнение с другими конструкциями обогрева пола. Нагревательные кабели экономичны

легко устанавливаются, и не требуют дополнительных затрат на техническое обслуживание. Пользуясь «теплым полом», можно в любой момент отключить от питания некоторые из обогреваемых комнат, например, в летние месяцы, и оставить только обогрев пола в ванной комнате с минимальными установками температуры. Современные терморегуляторы позволяют снизить энергопотребление, установив, например, экономичные режимы нагрева в течение ночи и рабочего дня.

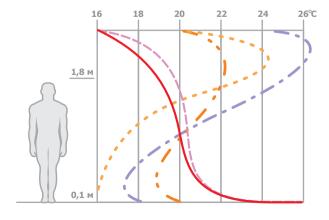
Отопление путем подогрева пола — это отопление при помощи низкотемпературного теплового излучения, которое прогревает воздух в помещении. При этом обеспечивается меньшая разность температур воздуха у пола и потолка, чем в помещениях с настенными отопительными системами. Нагрев воздуха на уровне пола обеспечивает более комфортное распределение тепла в помещении. При этом тепло не накапливается у потолка, как это происходит при традиционном отоплении при помощи настенных радиаторов.

Номенклатура наших изделий простирается от нагревательных кабелей для монтажа под керамической плиткой в ванных комнатах, до тонких нагревательных матов, укладываемых под деревянными полами, там, где имеет значение высота пола. Наши маты становятся все более популярными благодаря простоте их установки. Наши изделия пригодны для использования как для проектов реконструкции, так и для строительства новых зданий.

Кабельная система обогрева пола хорошо зарекомендовала себя в для создания исключительно комфортного внутреннего жилого пространства. «Теплый пол» является наилучшим решением для большинства типов помещений, например, ванных комнат, туалетов, коридоров, жилых помещений, кухонных и детских комнат.

Пол - это поверхность большой площади, обычно, с низкой температурой. Однако обогрев пола продуцирует тепловое излучение, и, вследствие этого, - равномерное распределение тепла по всему помещению. В сравнение с настенными отопительными приборами, обогрев пола, при том же уровне комфорта, позволяет снизить установку температуры на 2-3 °C. Это позволяет снизить энергопотребление на 5-10 % по сравнению с настенными отопительными приборами.

Тепловые потери и тепловой режим помещений


«Тёплые полы» повсеместно используются в качестве главного источника тепла для помещения.

В новых и надлежащим образом теплоизолированных зданиях потери тепла обычно составляют 40–80 Вт/м2. В старых и плохо теплоизолированных зданиях потери тепла составляют 80– 120 Вт /м2. Требуемая мощность для обогрева здания зависит от температуры наружного воздуха, желаемой температуры внутри здания и от того, насколько хорошо изолировано здание. Кроме того, необходимо учитывать наличие в помещении сквозняков от окон и дверей.

Полный расчёт тепловых потерь следует проводить в соответствии с ДБН В.2.6-31 и СНиП 2.04.05 по пониженной расчетной температуре внутреннего воздуха. Параметры микроклимата помещений, где используются кабельные системы обогрева, стоит принимать согласно с ДСТУ Б ЕN ISO 7730, ДСТУ Б ЕN 15251, ГОСТ 12.1.005, ДСН 3.3.6.042, ДСНіП 239, СНиП 2.04.05, ДБН В.2.2-15 и другими нормами с учетом ДБН В.2.5-24:2012. Для определения мощности электрической кабельной системы обогрева стоит пользоваться расчетной температурой греющих поверхностей, значения которых должно быть не более приведённых в таблице ниже:

МАКСИМАЛЬНАЯ РАСЧЕТНАЯ ТЕМПЕРАТУРА ПОВЕРХНОСТЕЙ С ОБОГРЕВОМ Максимальная расчётная температура поверхности Греющая поверхность 29°C помещения с постоянным пребыванием людей; Пол (сухое помещение) 31°C в помещением с временным пребыванием людей; 35°C в краевых зонах (в зонах наибольшего охлаждения); 27°C с деревянными покрытиями; 26°C с повышенной температурой воздуха на протяжении большей части отапливаемого периода (например пекарня); 26,5°C с аккумуляционном обогревом; 31°C для обходных дорожек и лавочек бассейнов, ванных комнат и т.д.; Пол (влажное помещение) 35°C или 28°C соответственно для внешней и внутренней стен Стена от уровня пола до 1 м; 28, 30, 33, 36 и 38°C соответственно к высоте помещения 2,8 3,0 3,5 4,0 и 6,0 м; 28, 30, 33, 36 и 38°C соответственно к высоте помещения 2,8 3,0 Потолок 3,5 4,0 и 6,0 м;

идеальный профиль

обычные обогреватели, расположенные у наружных стен

обычные обогреватели, расположенные у внутренних стен

воздущное отопление

напольное отопление

Проектирование и расчеты

Правильное проектирование - залог того, что теплый пол обеспечит наивысший комфорт и будет работать многие годы, доказывая свою энергоэффективность.

Все проектные расчеты необходимо выполнять в соответствии с нормативом «ЕЛЕКТРИЧНА КАБЕЛЬНА СИСТЕМА ОПАЛЕННЯ ДБН В.2.5-24:2012» и рекомендациями завода изготовителя нагревательных кабелей Nexans.

Исходными данными для расчета служат:

- выбор системы обогрева комфортный обогрев пола или основное отопление;
- определение типа помещения (санузел, кухня, спальня, балкон и т.д.);
- определение лицевого покрытия керамическая плитка, ламинат, иное;
- конструкция «пирожка пола», есть ли возможность поднятия уровня пола до 6 см и выше или нет;
- определение возможности использования теплоизоляции;
- определение площади обогрева;
- определение всей площади помещения;
- определение сетевого напряжения питания греющих кабелей.

Некоторые дополнительные данные для расчета:

- необходимо определить максимально точно реальную площадь обогрева с учетом всех отступов;
- расстояние от краев греющей поверхности до стен принимают равной 10 см;
- отступ греющей поверхности от габаритов ванны для обеспечения комфортной температуры пола в притык к ней не создают;
- греющий кабель не укладывают под ванной, унитазом, другой мебелью;
- греющий кабель не укладывают в недоступных для ног человека местах - под умывальником, впритык к рабочей стойке на кухне и т.д.

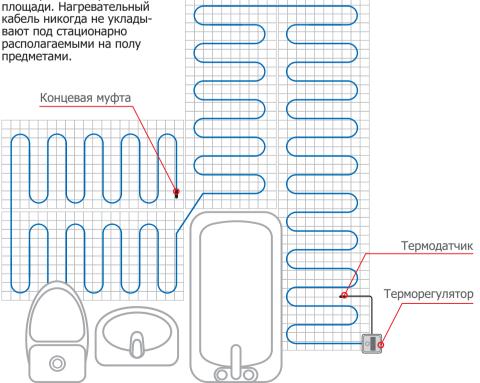
Для выбора требуемого кабельного изделия необходимо учесть следующее.

Требуемая мощность

Первым шагом является определение удельной мощности (Вт/м2) устанавливаемой кабельной системы. Для «тёплых полов» это можно определить либо расчетом тепловых потерь, либо подобрать уже готовое рассчитанное значение, что является быстрым и надёжным методом. Расчеты тепловых потерь могут оказаться сложными и, по возможности, должны производиться архитектором, проектировщиком или монтажной организацией.

Обогреваемая плошадь

Требуемая мощность системы обогрева обычно рассчитывается в расчёте на общую площадь. В помещениях со стационарно располагающимися предметами, такими как встроенная мебель, унитаз, ванна и т. п., может оказаться необходимым увеличить обогреваемую площадь, чтобы скомпенсировать необогреваемые участки площади. Нагревательный кабель никогда не укладывают под стационарно располагаемыми на полу


Выбор типа кабеля

Выбор типа кабеля зависит от типа применения и особенностей обогреваемой строительной конструкции, например, тип грунта или пола, требуемая мощность и т. п. Подробную информацию по этому вопросу можно найти в Части 2 (Применение) настоящего каталога.

Шаг укладки

Этот параметр применим к укладке кабеля, но не к кабельным матам, у которых расстояние между прямолинейными участками кабеля уже фиксировано. Если кабель укладывается с надлежащим шагом укладки, он покроет всю площадь. Шаг укладки легко определяется делением величины обогреваемой площади на длину кабеля.

Обогреваемая площадь (м²)
Шаг укладки (м) = Длина кабеля (м)

Выбор терморегулятора

Выбор принципа действия						
Основная задача отопления	Назначение	Выбор типа терморегулятора				
Тёплый пол. Может использоваться в виде основного источника тепла	Комфортный подогрев полов, например в ванной комнате или в прихожей. Используется также для просушки и устранения скольжения пола в прихожих, ванных комнатах, магазинах и иных общественных помещениях.	Электронный терморегулятор с датчиком температуры пола.				
Подогрев пола в сочетании с другими способами отопления	Базовое отопление осуществляется подогревом пола, а регулирование температуры - с помощью другого источника тепла.	Терморегулятор с датчиком температуры пола.				
Подогрев пола, отопление помещения. Может использоваться в виде основного или единственного источника тепла	Поддержка комфортной температуры во всем помещении.	Терморегулятор с встроенным или дистанционным комнатным датчиком (может быть объединен с датчиком-ограничителем температуры пола).				

Выбор датчика-ограничителя

В некоторых случаях необходимо использовать терморегулятор с выносным датчиком, регулирующим минимальную и максимальную температуру обогреваемой конструкции.

Ограничение минимальной температуры

Обеспечивает поддержку минимальной комфортной температуры пола. В случае нагревания помещения прямым солнечным светом система подогрева пола может отключаться на время, достаточное для снижения температуры пола. В случае массивных бетонных стяжек, толщиной 40–80 мм, подогрев пола при его включении займет достаточно продолжительное время.

Ограничение максимальной температуры

При монтаже в деревянных полах и в случае других применений может потребоваться ограничение максимальной температуры кабеля или собственно пола, например, до $28\,^{\circ}$ C.

Управление кабельной системой при помощи терморегулятора

Терморегулятор автоматически поддержит нужную температуру в помещении путем включения и выключения нагревательного кабеля по мере необходимости. На обогрев, производимый нагревательным кабелем, влияют такие факторы, как температура наружного воздуха, количество тепла, выделяемое другими электрическими приборами, осветительные устройства, солнце, и даже находящиеся в помещении люди. Все прочие независимые источники тепла могут вырабатывать до 10–20 % от общего количества тепла.

Экономия до 25 % с помощью режима пониженной температуры

В рабочие дни может потребоваться включение подогрева только утром и затем с конца дня до позднего вечера. В учреждениях подогрев требуется в течение дня с понедельника до пятницы. При снижении установки температуры приблизительно на 5°С в ночное время и днем в течение рабочей недели можно снизить расход энергии на 15–20%. Наибольший выигрыш режим пониженной температуры дает для полов толщиной не более 10–20 мм и деревянных полов. Массивные конструкции толщиной 40–60 мм и более дольше нагреваются и остывают, поэтому для них время понижения и повышения температуры должно быть больше. Это означает, что режим пониженной температуры должен использоваться только в том случае, если период его использования продолжается относительно долго, например всю ночь.

Установка терморегулятора с датчиком температуры пола

Правильная установка датчика — необходимое условие надлежащей работы терморегулятора и обеспечения комфорта и снижения энергопотребления системы до минимума. Датчик температуры пола должен устанавливаться в той части пола, которая не будет закрыта массивной мебелью. Не следует располагать датчик в непосредственной близости к нагревательному кабелю. Чтобы упростить замену датчика в случае неисправности, его нужно поместить в трубку. Трубку следует герметично закрыть и поместить как можно ближе к поверхности пола — это и будет главная контрольная точка. В случае необходимости, кабель датчика необходимо удлинить. Перед покупкой терморегулятора проверьте, достаточна ли длина, поставляемого провода выносного датчика пола.

Установка терморегулятора с встроенным датчиком комнатной температуры

Терморегулятор со встроенным датчиком комнатной температуры должен устанавливаться на высоте около 1,6 м над уровнем пола. Не следует устанавливать датчик на холодных наружных стенах, на сквозняке и в местах, на которые падает прямой солнечный свет или тепловое излучение от каких-либо источников. Если правильная установка терморегулятора невозможна, следует использовать дистанционный датчик комнатной температуры.

Формулы, обозначения и единицы измерения

Измеряемая величина	Единица измерения и ее обозначение	Символ
Напряжение	вольт (В)	U
Сила тока	ампер (А)	I
Сопротивление	ом (Ом)	R
Мощность ватт	ватт (Вт)	Р

Закон Ома: $U = R \times I$

Мощность: $P = U \times I$ (таким образом, $P=RI^2$ и $P = \frac{U^2}{R}$)

Для нагревательных кабелей на барабане:

Общее сопротивление (Ом) =

длина кабеля (м) х удельное сопротивление ($\frac{O_M}{M}$)

Шаг укладки (см) =
$$\frac{\Pi$$
лощадь (м²) х 100 Длина кабеля (м)

Таблицы наиболее важных единиц измерения энергии и мощности

ЭНЕРГИЯ							
кВт-ч	кГм	ккал	Дж = Вт-с = Нм	л.сч			
1 кВт-ч = –	367 100	860	3 600 000	1,359			
1 κΓм = 2,724.106	-	2,343.103	9,80665	3,704.106			
1 ккал = 1,163.103	426,9	-	4186	1,581.103			
1 Дж							
1 Вт-c = 0,2778.103	0,1020	0,2389.103	-	0,3777.103			
1 Hm							
1 л.сч = 0,7355	270 000	632,5	2 648 000	-			

мощность							
кВт	кГм/с	ккал/с	ккал/ч	л.с.			
1 кВт = -	102,0	0,2389	860	1,359			
1 κΓм/c = 9,807.103	-	2,343.103	8,434	0,01333			
1 ккал/с = 4,186	426,9	-	3600	5,691			
1 ккал/ч = 1,163.103	0,1186	0,2778.103	-	1,581.103			
1 л.с. = 0,7355	75	0,1757	632,5	-			

Часть 2 Применение

Обогрев бетонных полов

Мощность кабельной системы и шаг укладки нагревательного кабеля

В качестве «тёплых полов» в бетонных конструкциях рекомендуется использовать MILLIMAT или комплекты одно- или двужильного нагревательного кабеля ТХLР. Для того, чтобы подобрать необходимый комплект, используйте следующую формулу:

Мощность комплекта (Вт) = Общая площадь (м2) х Удельная мощность (Вт/м2)

При использовании стандартных комплектов кабеля ТХLР, например, с удельной мощностью 17 Вт/м, расчет шага укладки кабеля значительно упрощается. Искомый шаг укладки, или расстояние между прямолинейными участками кабеля, вычисляется по формуле:

Шаг укладки (м) = Обогреваемая площадь (м2)/ Длина кабеля (м)

Ограничение мощности кабеля

В деревянных полах и других конструкциях из горючего материала удельная мощность кабельной системы не должна превышать 100 Вт/м2, и удельная мощность кабеля должна быть не более 10 Вт/м. В кафельных и каменных полах и конструкциях из негорючего материала удельная мощность кабельной системы не должна превышать 200 Вт/м2, и удельная мощность кабеля должна быть не более 20 Вт/м.

«Тёплые полы», используемые для отопления прямого действия, и их монтаж

«Тёплые полы», используемые для отопления прямого действия обычно требуют удельной мощности 100-150 Вт/м2в зависимости от типа помещения. Конструкция пола с использованием кабельной системы в данном случае не должна иметь высокую теплоёмкость, а нагревательный кабель располагают так близко к поверхности пола, как это допускают местные строительные нормы. Обычно это означает, что нагревательный кабель помещается в нижний слой стяжки, или бетонной плиты, толщиной 50 мм, располагающейся на высококачественной теплоизоляции. При этом кабель должен быть полностью погружен в бетонную стяжку для того, что бы обеспечить максимальную и полную передачу тепла от кабеля стяжке. Нельзя помещать кабель непосредственно на теплоизоляцию, поскольку прямой контакт с изоляцией может привести к перегреву кабеля в процессе эксплуатации. Одним из возможных решений является помещение тонкой бетонной плиты поверх теплоизоляции и укладка кабеля на этой плите. Другим - укладка нагревательного кабеля TXLP поверх мелкоячеистой проволочной сетки или арматурной сетки. Это создаёт свободное пространство между нагревательным кабелем и теплоизоляцией, которое затем заливается стяжкой. Старайтесь не наступать на кабель в процессе монтажа.

Заливка бетонной стяжки

В случае наливных полов всех типов большое значение имеет правильно приготовление смеси цемента, песка и воды. Используйте надлежащее соотношение песка, цемента и воды, и тщательно их перемешивайте. Старайтесь использовать смесь сразу после её приготовления. Следуйте инструкции по применению производителя смеси. Избегайте образования в стяжке воздушных включений и пузырей. Это обеспечит стяжке наилучшую теплопроводность и защитит кабель от перегрева. Тепло будет легче передаваться от кабеля в окружающую среду, и пол быстрее будет реагировать на регулировку нагрева. Никогда не помещайте никакие теплоизоляционные материалы поверх нагревательного кабеля! Бетонная стяжка с нагревательным кабелем должна просушиваться и отвердевать естественным путем, поэтому не следует включать нагревательный кабель в течение первых 4-6 недель после заливки стяжки.

Реконструкция

При производстве ремонта, обновлении или реконструкции, а также в случае, когда высота пола ограничена, может применяться решение с использованием тонкой стяжки и кабельного нагревательного мата МІLLІМАТ, что позволяет уменьшить толщину стяжки до 10-15 мм (см. главу о реконструкции).

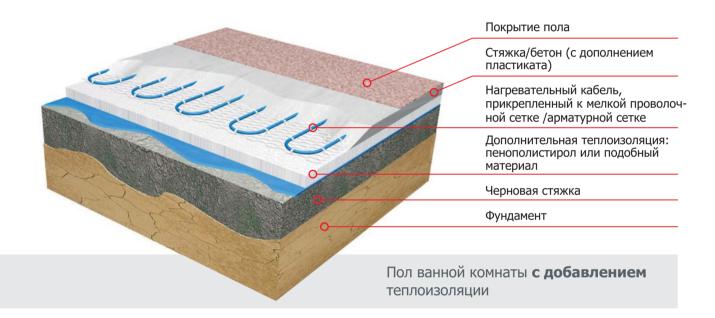
Теплоаккумуляци- онное отопление

Удельная мошность теплоаккумуляционных кабельных систем отопления обычно составляет 150-200 Вт/м2. Эти системы требуют, чтобы нагревательные кабели укладывались в бетонные конструкции пола, имеющие большую тепловую массу. Часто бетонная плита толщиной около 100 мм помещается поверх теплоизоляции высокой плотности, кабели укладываются на плиту и покрываются стяжкой толшиной не менее 50 мм. Обогрев такого пола включается на ночь и выключается утром. И затем плита отдаёт аккумулированное тепло в течение всего дня.

Обогрев пола в ванных комнатах

Удельную мощность кабельной системы для ванных комнат целесообразно выбирать в диапазоне 120—170 Вт/м2.

Терморегулятор


Рекомендуем использовать терморегулятор с датчиком температуры пола.

Монтаж

Нагревательный кабель обычно монтируется на мелкоячеистой или арматурной сетке. Можно крепить кабель с помощью кабельных хомутов, но следует помнить, что их нельзя сильно затягивать. Такое крепление преследует цель лишь некоторой фиксации кабеля на месте во время заливки стяжки/бетона, и слишком сильное затягивание может повредить кабель.

Конструкция пола

Ниже показаны два оптимальных варианта монтажа пола ванной комнаты, в которых учитывается как расположение кабелей, так и конструкция пола.

Обогрев деревянных полов на лагах

Для кабельного обогрева деревянных полов обычно используют кабель с удельной мощностью 10 Вт/м при удельной мощности кабельной системы до 100 Вт/м2.

Для обеспечения удельной мощности системы 60-100 Вт/м2 при удельной мощности кабеля не более 10 Вт/м, шаг укладки должен находиться в пределах 90-130 мм.

Проектирование

Во избежание повреждения или растрескивания половиц в помещениях, в которых люди проводят длительное время, необходимо принять следующие меры предосторожности - удельная мощность кабельной системы не должна превышать 60 Вт/м2. Кабель должен быть распределён равномерно по всей площади пола.

Все материалы должны быть защищены от дождя и влаги в процессе строительства. Все материалы необходимо высушить перед укладкой настила пола.

Рекомендуется использовать электронный терморегулятор, ограничивающий обогрев при помощи датчика температуры помещения и пола. В идеальном случае, температура на поверхности пола никогда не должна превышать 28 °C, что соответствует более высокой температуре пола в месте расположения датчика температуры пола (обычно около 35° С).

• Если возможно, половицы пола следует предварительно поместить поверх подогреваемого пола свободно, без их закрепления, и закрепить их через несколько дней.

• Следует избегать размещения на обогреваемом полу каких-либо толстых ковров, или ковров, полностью закрывающих поверхность пола от стены до стены.

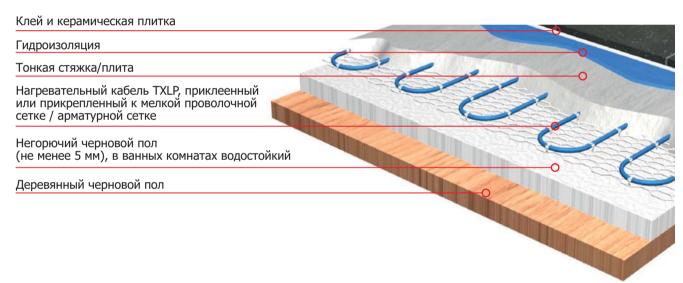
Монтаж

Пространство между лагами должно быть заполнено минеральной ватой. Сверху должна оставаться воздушная прослойка не менее 30 мм (см. рис.). Поверх теплоизоляции укладывается мелкоячеистая проволочная сетка, и кабель крепится на этой сетке через каждые 350 мм. Нагревательные кабели следует укладывать параллельно лагам. Расстояние от кабеля до деревянных лаг должно составлять не менее 10 мм. При пересечении опорных лаг нужно прорезать паз размером 10х10 мм, сквозь который пройдет кабель.

Пазы должны прорезаться таким образом, чтобы опорные свойства лаги не пострадали, а расстояние между пазами составляло не менее 50 мм. Поверхность лаги, которая имеет непосредственный контакт с кабелем, проклеивается алюминиевым скотчем. Если кабели укладываются до обшивки лаг, пазы не обязательны. В так называемых платформенных полах, где лаги закрываются на раннем этапе для образования рабочей платформы, не рекомендуется устанавливать изоляцию снизу от кабеля, потому что кабель может сместиться вверх в направлении поверхности пола. Это приведёт к уменьшению

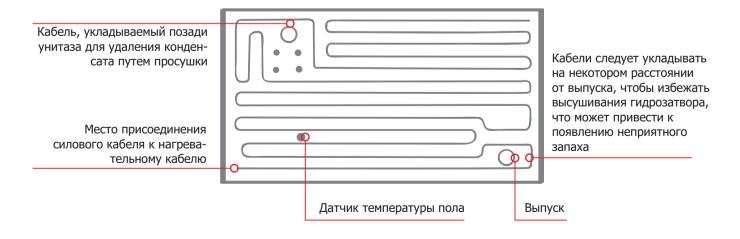
воздушной полости, и кабель окажется окружённым теплоизоляцией.

Технические решения для проектов реконструкции


Реконструкция существующих помещений повышает комфортность и стоимость любого дома. Реконструкция также предоставляет отличную возможность установить «тёплый пол». Мы располагаем решениями, которые требуют минимального подъема пола, благодаря чему в самом помещении требуется произвести лишь небольшие переделки. Реконструкция может производиться с использованием произвольно укладываемого кабеля TXLP или тонких кабельных матов MILLIMAT.

Реконструкция с использованием кабеля TXLP

Мы рекомендуем использовать для этого варианта двух- или одножильный кабель TXLP мощности 10 Вт/м или 17 Вт/м*. Поместите кабель на негорючий черновой пол толщиной не менее 5 мм, учитывая расположение санитарных приборов, таких как унитаз, выпуск, ванна и т. п. Реконструкция с использованием кабеля TXLP.


См. рисунок иллюстрирующий расположение произвольно укладываемого нагревательного кабеля, ниже. Обратите внимание на то, что прямолинейные участки кабеля не пересекаются и не соприкасаются друг с другом, благодаря чему обеспечивается наилучшая теплоотдача. Затем нагревательный кабель заливается бетонной стяжкой с небольшой общей высотой. После высушивания и отвердевания можно поверх стяжки постелить гидроизолирующую прокладку, и затем приступать к монтажу покрытия пола.

* В полах с небольшой монтажной высотой рекомендуется применять кабели с удельной мощностью не более 10 Вт/м. Это обеспечит равномерное распределение тепла. Если черновой пол или покрытие пола состоят из горючих материалов, удельная мощность кабеля не должна превышать 10 Вт/м и удельная мощность кабельной системы не должна превышать 80 Вт/м2. О порядке заливки стяжки см. стр. 13.

Реконструкция при помощи произвольно укладываемого кабеля

Реконструкция с произвольно укладываемым кабелем, подъем пола не более 30 мм - традиционное и простое решение с использованием такого кабеля.

Технические решения для проектов реконструкции

Реконструкция с использованием кабельного мата MILLIMAT ™

Для того, чтобы избежать дополнительной переделки дверей и порогов при реконструкции помещений, очень важно свести к минимуму высоту пола. В подобных случаях лучше всего использовать кабельный мат MILLIMAT.

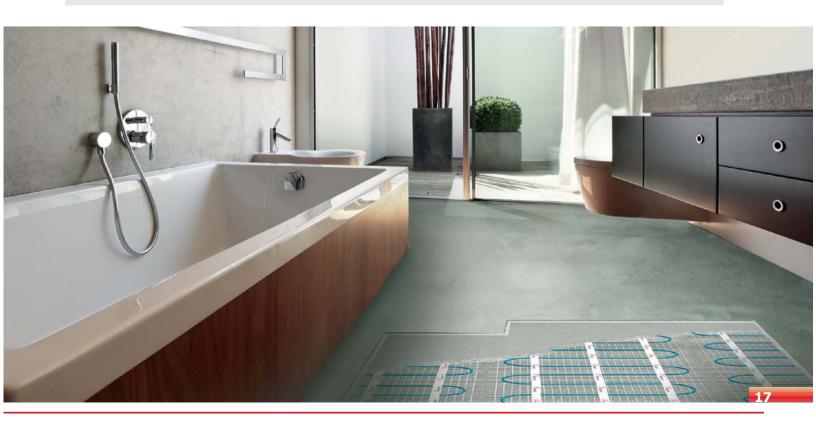
Этот мат представляет собой комплект тонкого двужильного нагревательного кабеля, прикрепленный к гибкой стекловолоконной сетке. Комплект тонкого нагревательного кабеля поставляется с кабелем питания длиной 2,5 м. Общая толщина мата вместе с кабелем составляет 4,5 мм. Ширина составляет 50 см.

Сетку мата MILLIMAT можно легко резать и подгонять по форме помещения. Мат можно укладывать непосредственно в клей для плитки или в стяжку под плиткой и плиточным клеем. Если мат устанавливается непосредственно в клей, то кабель не должен быть повреждён при последующем монтаже плитки. Клеевой слой не должен содержать воздушных пузырьков. Для жилых комнат, прихожих, кухонь и других подобных помещений рекомендуется использовать маты с удельной мощностью до 150 Вт/м2.

Мат можно укладывать на черновой пол любого типа выровненный и прочный. Кроме того, мат с удельной мощностью 100 Вт/м2 можно также укладывать под паркет и другие деревянные покрытия пола; при этом рекомендуется использовать терморегулятор с функцией контроля температуры. Для ванных комнат, туалетов, прачечных и иных помещений, требующих интенсивного обогрева, рекомендуется применять маты с удельной мощностью 150 Вт/м2. Этот мат следует укладывать

на негорючий черновой пол, выровненный и прочный. Пол, в котором обогрев установлен во время реконструкции, обычно быстро и легко регулируются, поскольку нагревательные маты располагаются вблизи поверхности пола, что также обеспечивает пониженное энергопотребление. На рисунке показана базовая конструкция пола с использованием MILLIMAT.

Базовое решение для пола MILLIMATTM


Керамическая плитка / покрытие пола

Керамическая плитка / покрытие пола

Гидроизоляция

Тонкая стяжка/плита

Черновой пол, водостойкий в ванных комнатах

Системы снеготаяния

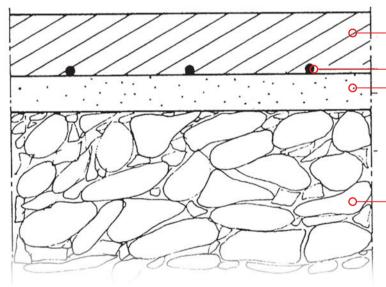
Нагревательные кабели Nexans хорошо зарекомендовали себя в системах снеготаяния. Для этого используют резистивный нагревательный кабель таких типов, как TXLP, DEFROST SNOW.

Мощность кабеля определяется в основном исходя из потребностей конструкции с учетом климатических условий и характеристик системы управления.

На дорогах, проездах, пешеходных дорожках, и тому подобных объектах нагревательный кабель должен устанавливаться на выровненном основании из уплотненного гравия, песка и других подобных материалов. Поверхностным слоем конструкции может быть асфальт, бетон, бруски и камень для мощения.

В случае, если нагревательные кабели TXLP или DEFROST SNOW устанавливаются на теплоизоляционном основании, то поверх этого теплоизоляционного основания следует установить проволочную сетку. Крепление кабелей к этой сетке предотвратит впрессовывание кабеля в изоляционный слой.

Особые предосторожности при укладке кабеля в асфальт

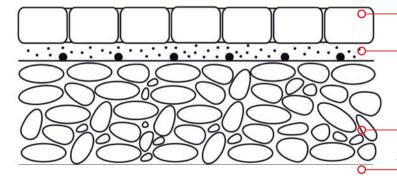

Необходимо проявлять особую осторожность при укладке покрытия сверху на нагревательный кабель. Не роняйте камни или плиты на нагревательный кабель. Температура асфальта не должна превышать 160 °C.

Сначала кабель следует вручную покрыть тонким слоем асфальта, и уже потом укладывать асфальт на полную высоту и уплотнять его с помощью механических средств.

Если нагревательные кабели заливаются бетоном, необходимо убедиться, чтобы подложкой служило прочное выровненное основание, а заливаемый бетон затем уплотнялся. Обычно кабели покрываются 50-мм слоем асфальта, бетона или песка с камнем или плитами для мощения.

Рекомендуемые значения удельной мощности кабельной системы для плавления снега и льда находятся в диапазоне 250-400 BT/м².

Тротуар с асфальтовым или бетонным покрытием


Асфальт / бетон, 50 мм

TXLP / DEFROST SNOW

уплотненный гравий/песок или подобный материал, 20–30 мм (Размер зерен 0–8 мм/0–4 мм)

Дробленый камень

Тротуар с камнем или плиткой для мощения

Бруски для мощения / облицовочный камень

Слой 20-30 мм каменной пыли (размер зерен 0-8 мм/0-4 мм), окружающий нагревательные кабели

Подстилающий грунт (уплотненный и выровненный)

Возможное упрочнение подстилающего грунта тканью из керамического волокна.

Нагревательные кабели на уличных лестницах

Нагревательные кабели на уличных лестницах укладываются продольно вдоль ступеней и только в горизонтальной плоскости. Кабель покрывается стяжкой, бетоном, или слоем плиточного клея с последующим помещением на него тротуарной плитки или камня. Для этого применения используют кабель типов DEFROST SNOW или TXLP с применением нескольких прямолинейных участков кабеля вдоль каждой ступеньки. При этом расстояние между этими участками не должен превышать 10 см.

Ограничени	Ограничения по удельной мощности кабеля					
С песком/ плитами	He более 30 Вт/м *					
Асфальт	Не более 30 Вт/м					
Бетон	Не более 35 Вт/м					

Монтаж

Нагревательный кабель следует укладывать с одинаковым шагом. Не следует сближать прямолинейные участки кабеля, поскольку это может привести к перегреву и выходу из строя нагревательного кабеля. Обязательно измерьте сопротивление изоляции и проводника до укладки внешнего покрытия и непосредственно после этого.

Сопротивление изоляции может уменьшаться при повышении температуры, например, в случае измерения для кабеля в теплом асфальте. Сопротивление проводника (активное) с повышением температуры увеличивается.

^{*} Если вы не уверены в достаточной теплопроводности песка, то не используйте кабель удельной мощности выше 28 Вт/м.

Система антиобледенения водосточных желобов и водостоков крыш

Нагревательные кабели лучшее средство для предотвращения обледенения и скопления большого количества снега в водосточных желобах и водостоках крыш. Системы антиобледенения предотвращают опасность падения снега, льда и сосулек, значительно повышая тем самым безопасность эксплуатации зданий.

ТЕПЛАЯ КРЫША - это крыша в доме с плохой теплоизоляцией. Тепло поднимается кверху и нагревает крышу. Снег, лежащий на крыше, тает. Талая вода, стекая с крыши, остывает в холодных водостоках и там замерзает.

ХОЛОДНАЯ КРЫША - ЭТО КРЫША В ДОМЕ С ХОРОШЕЙ ТЕПЛОИЗОЛЯЦИЕЙ. Обледенение водостоков в ЭТОМ СЛУЧАЕ МОЖЕТ ПРОИСХОДИТЬ В КОНЦЕ ЗИМЫ. СНЕГ НА КРЫШЕ ТАЕТ ПОД ДЕЙСТВИЕМ СОЛНЕЧНЫХ ЛУЧЕЙ, В ТО ВРЕМЯ КАК ВОДОСТОКИ И ВОДОСТОЧНЫЕ ЖЕЛОБА МОГУТ НАХОДИТЬСЯ В ТЕНИ. И ТАЛАЯ ВОДА, СТЕКАЯ С КРЫШИ, МОЖЕТ В НИХ ЗАМЕРЗАТЬ.

Все проектные расчеты необходимо выполнять в соответствии с нормативом «НАСТАНОВА З УЛАШТУВАННЯ АНТИКРИГОВИХ ЕЛЕКТРИЧНИХ КАБЕЛЬНИХ СИСТЕМ НА ПОКРИТТЯХ БУДІВЕЛЬ І СПОРУД ТА В ЇХ ВОДОСТОКАХ ДСТУ-Н Б В.2.5-78:2014» и рекомендация завода изготовителя нагревательных кабелей Nexans.

Причины возможного намерзания льда и образования сосулек различают по искусственным и естественным происхождением.

Основные искусственные причины:

- «Паразитное» нагревание вследствие теплопотерь через покрытие;
- Недостаточная теплоизоляция кровли;
- Теплый чердак / технический этаж или наличие мансарды;
- Наличие тепловыделяющего оборудования под крышей;
- Отсутствие вентиляционного слоя / промежутке под покрытием или непроветриваемость чердака.

Основные природные причины:

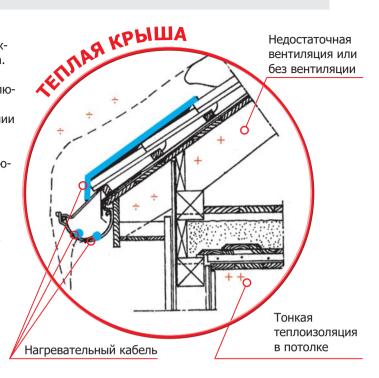
- Нагрев солнцем участков кровли, особенно темного цвета, не покрытых снегом; не покрытых снегом;
- Неравномерный нагрев солнцем кровли и прилегающих водостоков, поскольку они озаряются лучами солнца под разными углами;
- Суточное изменение температуры наружного воздуха, как правило, с плюсовой до минусовой;

Система антиобледенения водосточных желобов и водостоков крыш

- Образование талой воды под слоем снега в результате теплоизоляции кровли этим слоем от внешнего воздуха с минусовой температурой.

Главная причина намерзания льда и образования сосулек - это более низкая температура краевой зоны покрытия и его водостоков по сравнению с температурой остального покрытия.

Сочетание выше определенных и непредвиденных природных и искусственных причин может призвести до намерзания льда и образования сосулек на протяжении всего зимнего периода года.


Проектирование и расчет

Ввиду высокой мощности систем, используемых для данного применения, и изменяющейся длины водосточных желобов и водостоков рекомендуется использовать одножильный кабель TXLP, поставляемый на барабанах. Вычислите суммарную длину водостока и водосточных желобов. Если необходимо, петля в водостоке должна опускаться до глубины промерзания. Умножьте эту длину на 2, и вы найдёте длину и мощность кабеля. Поскольку кабель укладывается параллельными прямолинейными участками, удельная мощность кабеля должна равняться значению удельной мощности обогрева водостока (Вт/м), поделенному на 2. Кабель монтируется одним непрерывным отрезком в водосточном желобе или водостоке. Кабель крепится наверху каждого водостока с помощью кронштейна подвески из нержавеющей стали.

Образовавшаяся петля кабеля защищается у нижнего отверстия водостока. Терморегулятор должен производить отключение при температуре около + 5 °C. Для экономии электроэнергии в случае холодных крыш можно также использовать отключение терморегулятора при температуре около -10 °C. Рекомендуем использовать современные системы управления. Такие системы часто содержат два или три датчика и усовершенствованный контроллер, что позволяет снизить энергопотребление до минимума. Для обеспечения безопасности к сети переменного тока кабель должен подключаться через устройство защитного отключения (УЗО), срабатывающее при токе не более 30 мА.

Кабели на поверхности крыши

В некоторых сложных ситуациях может потребоваться монтаж нагревательного кабеля на наружной части теплых крыш в дополнение к кабелю в водосточных желобах и водостоках

Защита труб и резервуаров от промерзания

Выбор типа кабеля

Обычно для защиты труб от промерзания экономически целесообразно использовать кабель TXLP. Во многих случаях также целесообразно использовать саморегулирующиеся кабели. При использовании кабеля TXLP максимальная температура трубопровода не должна превышать 50°C. Во всех случаях рекомендуется использовать терморегулятор. Терморегулятор с внешним датчиком, обеспечит низкое энергопотребление и постоянную температуру.

Таблица выбора мощности кабеля TXLP:					
Температура трубы	Максимальная удельная мощность (Вт/м)				
Темп. = 45 - 50°C	10				
Темп. = 30 - 45°C	15				
Темп. = < 30°C	20				

Расчёт необходимой мощности кабеля

Для расчёта мощности при выборе подходящего нагревательного кабеля необходимы следующие данные:

- Размеры трубы или площадь поверхности резервуара
- Толщина теплоизоляции
- Температура окружающей среды
- Требуемая температура резервуара или трубы Ввиду наличия неизвестных и неконтролируемых факторов необходимо несколько увеличить результаты расчета тепловых потерь. Поправочный коэффициент может достигать величины 1,5.

Трубы с теплоизоляцией

Трубы, монтируемые на открытом воздухе, необходимо изолировать. В противном случае потери тепла будут высокими даже в случае труб малого диаметра.

Ограничения для кабеля ТХLР

Кабель TXLP не применяется, если температура трубопровода превышает 50°C

Расчет теплопотерь:

Для расчета можно использовать следующую формулу:

Q [Βτ]=	$\frac{2 \times \pi \times \lambda \times L \times (t_{BH}-t_{Hap})}{\ln(D/d)} \times 1,3$
где:	
D [M]	- наружный диаметр трубы с изоляцией
d [м]	- наружный диаметр трубы
π	- константа (3,14)
L [M]	- длина трубы
t _{вн} [°С]	- температура жидкости внутри трубы
t _{нар} [°C]	- температура окружающей среды
λ[Вт/м°С	[] - коэффициент теплопроводности термоизоляции, обычно для современных материалов равен 0,04
1,3	- коэффициент запаса

Таблица логарифмов					
D/d	In (D/d)				
1.0	0.0				
1.5	0.4				
2.0	0.7				
2.5	0.9				
3.0	1.1				
3.5	1.3				
4.0	1.4				
4.5	1.5				
5.0	1.6				
6.0	1.8				
7.0	2.0				
8.0	2.1				
9.0	2.2				
10.0	2.3				
15.0	2.7				
20.0	3.0				
25.0	3.2				

Защита труб и резервуаров от промерзания

Обычно используется одножильный нагревательный кабель TXLP. Как правило, нагревательный кабель укладывается «змейкой» в горизонтальном или вертикальном направлении. Для решения стандартных задач, обогреваемая высота резервуара должна составлять минимум 1/3 высоты его цилиндрической поверхности, но теплоизолироваться резервуар должен по всей своей площади. Обратите внимание, что все люки и фитинги, расположенные на резервуаре, должны находиться в свободном для обслуживания положении. В случае решения нестандартных задач всегда обращайтесь за консультацией к специалистам ООО «Разумный Дом».

Резервуары

Необходимая нагрузка для резервуаров обычно вычисляется исходя из следующих параметров:

К = коэффициент теплопроводности теплоизоляции (Вт/Км2)

S = площадь поверхности резервуара

 ΔT = разность температур внутри и снаружи резервуара.

1.3 = коэффициент запаса.

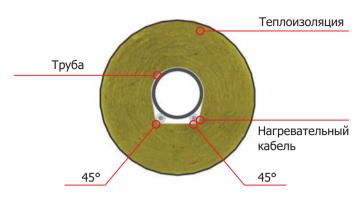
В данном случае принимается во внимание не повышение температуры содержимого резервуара, а поддержание температуры на заданном уровне.

Тепловая нагрузка Р

P=KxSxΔTx1.3

Общие правила монтажа кабеля

Обогреваемая поверхность должна быть ровной, без царапин и острых кромок, а нагревательный кабель должен находиться в хорошем контакте с поверхностью по всей своей длине. Теплоизоляция должна быть защищена от проникновения воды.


Монтаж кабеля на трубопроводах


Чтобы поддерживать заданную температуру трубопровода диаметром менее 100 мм, обычно вдоль трубы прокладывается два прямолинейных участка кабеля. В случае труб диаметром более 100 мм для обеспечения равномерного распределения тепла вдоль трубы обычно прокладывается четыре прямолинейных участка кабеля. Нагревательные кабели могут также монтироваться на трубу в виде спирали. Для правильного выбора кабеля можно воспользоваться таблицами на стр. 51 и 52 для напряжений 230 и 400 В соответственно. Вне зависимости от типа кабеля его следует прикрепить к трубе через каждые 30 см лентой из стеклоткани. После этого

кабель необходимо вдоль всей длины трубы покрыть алюминиевой лентой или фольгой. Фольга обеспечивает лучший тепловой контакт с резервуаром или трубой. При наличии трубопроводной арматуры и фланцев кабель должен устанавливаться таким образом, чтобы был возможен демонтаж арматуры и фланцев без повреждения или разрезания нагревательного кабеля. Теплоизоляция трубопровода должна быть надежно защищена от проникновения влаги. Экран/провод заземления нагревательного кабеля следует подключить к заземлению электрической сети. Сопротивление электрической изоляции нагревательного кабеля измеряется до и после монтажа теплоизоляции трубопровода.

Защита труб и резервуаров от промерзания

Вверх

Использование саморегулирующихся нагревательных кабелей

Удельная мощность и теплоотдача саморегулирующегося нагревательного кабеля изменяется при повышении или понижении температуры трубопровода. Необходимо выбрать кабель с удельной мощностью, соответствующей температуре трубы.

Проверьте рабочую температуру трубы и с помощью соответствующих диаграмм, имеющихся в спецификации кабеля, определите необходимую температуру кабеля.

Монтаж

Саморегулирующийся нагревательный кабель обычно укладывается прямо вдоль трубы или по спирали, чтобы обеспечить требуемую мощность. Нагревательные кабели крепятся к трубам теплостойкой лентой. Наилучший тепловой контакт и распределение тепла достигаются путем закрепления нагревательного кабеля на трубе алюминиевой фольгой перед наложением теплоизоляции. Изоляция должна быть надёжно защищена от проникновения влаги. На фланцах и арматуре технологических трубопроводов укрепляют петли кабеля длиной 1–1,5 м таким образом, чтобы можно было в случае необходимости произвести разъединение элементов трубопровода.

Терморегулятор

Для достижения поддержания постоянной температуры и экономии электроэнергии рекомендуется применять электронные терморегуляторы с дистанционным датчиком температуры.

Пусковой ток

В начальный момент подключения саморегулирующиеся кабели подвержены воздействию пусковых токов

Пока кабель не прогреется, он потребляет более высокую мощность. Для наших кабелей верны следующие ориентировочные соотношения:

Температура 10°С Пусковой ток = прибл. 4х номинальный ток

Температура -5°C Пусковой ток = прибл. 5х номинальный ток

Температура -20°C Пусковой ток = прибл. 6х номинальный ток

Бывают случаи, когда укладка нагревательного кабеля на трубопровод носит более сложный характер, нестандартные решения легко выполняются универсальным кабелем Nexans TXLP on DRUM, при решении таких задач всегда связывайтесь со специалистами ООО «Разумный Дом».

Обогрев полов морозильных камер

Для этой цели рекомендуется использовать резистивный нагревательный кабель типа TXLP

Требуемая удельная мощность

В морозильных камерах с хорошей теплоизоляцией пола требуемая удельная мощность составляет 20–30 Вт/м2.

Система управления

Кабельная система защиты от промерзания должна иметь терморегулятор с выносным датчиком температуры, размещённым на той же глубине, что и кабель, между двух его соседних витков.

Монтаж

При использовании кабеля с удельной мощностью 5-10 Вт/м, рекомендуемый шаг укладки составляет 30-40 см. Обычно нагревательный кабель укладывается в бетонный пол до того, как пол изолируется и покрывается настилом. Обязательно измеряйте сопротивление изоляции и проводника перед укладкой бетона.

Совет

Ввиду сложности конструкции полов холодильных камер и затруднённости доступа к установленному в нём нагревательному кабелю, в некоторых случаях дополнительно устанавливают резервную нагревательную кабельную систему.

Пример использования нагревательного кабеля в конструкции пола морозильной камеры.

Обогрев спортивных площадок и полей

Для этой цели рекомендуется использовать резистивный нагревательный кабель типа TXLP

Требуемая удельная мощность


Для подогрева почвы в оранжереях и подобных строениях требуемая удельная мощность составляет 5 Вт/м2/°С. Другими словами, чтобы повысить температуру грунта на 1°С необходима удельная мощность системы 5 Вт/м2. Для обогрева грунта на спортивных аренах обычно требуется удельная мощность до 120 Вт/м2.

Обогревая грунт на спортивных аренах, появляется возможность продлить вегетативный сезон и обеспечить быстрый рост травы. Можно предотвратить промерзание грунта и растопить небольшое количество льда и снега. Примечание! Во время сильных снегопадов указанная выше нагрузка недостаточна для растапливания всего снега и льда. (Для эффективного растапливания снега потребуется стандартная система снеготаяния с удельной мощностью 300 Вт/м2.)

Выбор и расположение нагревательного кабеля, а также способ укладки выбираются для каждого случая отдельно.

Во время монтажа важно не превышать силу натяжения кабеля, особенно, если для этой цели применяется механическое оборудование. Песок, окружающий нагревательный кабель, не должен иметь крупных частиц.

Примечание. Всегда измеряйте сопротивление изоляции и проводника перед укладкой в грунт.

Сушка бетонных конструкций

Электронагревательные кабели могут использоваться для сушки и ускоренного отвердевания бетона в новых зданиях. В холодном климате отвердевание может происходить медленно, и монтаж нагревательных кабелей позволяет сократить время отвердевания.

Уменьшение времени сушки позволяет сократить общий срок строительства. Нагревательные кабели помещают прямо в бетон. Это предотвращает замерзание и ускоряет отвердевание бетона, позволяя снять опалубку через 72 часа даже в сильный холод. На более позднем этапе можно снова подключить нагревательные кабели для эффективного просушивания здания и базового отопления в течение строительного периода. В случае быстрой сушки бетона к малярным работам можно приступать раньше, чем при использовании других методов нагрева.

Для этой цели обычно используют нагревательные кабели TXLP. Подключив стандартные комплекты, с удельной мощностью кабеля 10 Вт/м, и рассчитанные на напряжение 230 В, к напряжению 400 В, появляется возможность повысить их мощность до 30 Вт/м. Для сушки и отвердевания бетона используется удельная мощность 400 Вт/м3. Кабель крепится к арматурной сетке и не должен пересекаться или накладываться друг на друга в какой-либо точке. Кабель не должен прикасаться к пластику или какому-либо горючему материалу.

Нагревательный кабель может использоваться вплоть до завершения строительства. При завершении строительных работ силовой кабель обрезают

Внимание!

Не рекомендуется использовать нагревательные кабели для этой цели при температурах окружающего воздуха 5°С и выше.

При заливке бетон должен иметь температуру около 20°С. Нагревательные кабели необходимо включить после заливки бетона. Время отвердевания составляет около 72 часов.

Порядок монтажа

Используйте нагревательный кабель с удельной мощностью до 30 Вт/м.

- 1. Вычислите общую мощность, требуемую в зависимости от температуры, и определите общее число необходимых комплектов. Округлите их количество до большего числа.
- 2. Для каждой формы, в которую заливается бетон, определите количество кабеля, необходимого для монтажа. Прикрепите кабель внутри формы к арматурной сетке; расстояние между кабелями должно быть не менее 6 см.
- 3. Кабель должен быть погружен в бетон по всей длине, включая безмуфтовое соединение SPLICE с проводом питания.
- 4. Помните, что кабель не должен контактировать с теплоизоляцией и материалами из пластика.
- 5. Поместите датчик температуры, если необходимо, посередине между двумя нагревательными кабелями.
- 6. Присоедините нагревательные кабели к источнику питания и проверьте правильность подаваемого напряжения. К сети переменного тока кабели должны подключаться через устройство защитного отключения (УЗО) с порогом срабатывания не более 30 мА. Установите нужную температуру, если используется терморегулятор. В заключение, путем измерения тока убедитесь, что нагревательный кабель выделяет тепло.

Часть 3

Техническая информация о продукции

N-HEAT® TXLP/2R CLASSIC Комплект двужильного нагревательного кабеля для обогрева пола

Применение:

Комплекты нагревательного кабеля TXLP/2R идеально подходят для обогрева бетонных полов в зданиях. Они также могут использоваться в системах снеготаяния, для защиты водостоков и желобов крыш от обледенения, и обогрева грунта. Каждый комплект имеет уникальное встроенное безмуфтовое соединение с маркировкой =>SPLICE<= на поверхности кабеля. Обратный провод не требуется. Монтаж упрощается за счёт того, что конец кабеля можно поместить там, где это удобно. Герметичная концевая муфта водонепроницаема и

может устанавливаться в любом месте. Кабель питания длиной 2,25 м имеет маркировку ***.

Конструкция:

- Однопроволочный резистивный проводник
- Однопроволочная силовая «обратная» жила
- Изоляция из сшитого полиэтилена
- Проводник заземления из луженой меди
- Алюминиевый экран
- Внешняя оболочка из ПВХ
- Внешний диаметр: около 7,0 мм

Технические характеристики:

- Комплекты мощностью от 200 до 3300 Вт с фиксированным сопротивлением для каждой величины мощности комплекта
- Удельная мощность кабеля: 17 Вт/м
- Устойчивый к воздействию ультрафиолета
- Максимальная рабочая температура внешней оболочки: 65°C
- Минимальный радиус изгиба: пятикратный диаметр кабеля
- Допуск на сопротивление проводника: -5/+10%
- Максимальное напряжение системы: 300/ 500 В
- Номинальное напряжение: 230 В

TXLP/2R CLASSIC - комплекты двужильного нагревательного кабеля, 17 Вт/м						
тип	Мощность при напряжении 230 В	Длина нагрева- тельного элемента (*)	Номинальное сопротивление нагревательно- го элемента	Наруж- ный диаметр	Вес одного комплекта	
	(Вт)	(M)	(Ом)	(MM)	(кг)	
TXLP/2R 200/17	200	11.8	264,5	7.0	1.1	
TXLP/2R 300/17	300	17,6	176,3	7,0	1,4	
TXLP/2R 400/17	400	23,5	132,3	7,0	1,8	
TXLP/2R 500/17	500	29,3	105,8	7,0	2,2	
TXLP/2R 600/17	600	35,2	88,	7,0	2,6	
TXLP/2R 700/17	700	41,0	75,6	7,0	2,9	
TXLP/2R 840/17	840	49,7	63,0	7,0	3,5	
TXLP/2R 1000/17	1000	58,3	52,9	7,0	4,1	
TXLP/2R 1250/17	1250	72,4	42,3	7,0	5,0	
TXLP/2R 1370/17	1370	80,8	38,6	7,0	5,3	
TXLP/2R 1700/17	1700	100,0	31,1	7,0	6,7	
TXLP/2R 2100/17	2100	123,7	25,2	7,0	8,0	
TXLP/2R 2600/17	2600	154,5	20,3	7,0	9,7	
TXLP/2R 3300/17	3300	194,0	16,0	7,0	12,1	

^{*} В дополнение к этому, изделия поставляются с силовым кабелем питания длиной 2,25 м

N-HEAT® TXLP/1 Комплект одножильного нагревательного кабеля для обогрева пола

Применение:

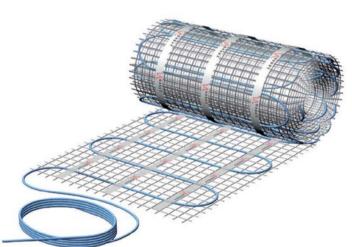
Комплекты нагревательного кабеля TXLP/1R идеально подходят для обогрева бетонных полов в зданиях. Они также могут использоваться в системах снеготаяния, для защиты водостоков и желобов крыш от обледенения и для подогрева грунта. Каждый комплект имеет уникальное встроенное безмуфтовое соединение с маркировкой =>SPLICE<= на поверхности кабеля.

Конструкция:

- Однопроволочный резистивный проводник
- Изоляция из сшитого полиэтилена
- Проводник заземления из луженой меди
- Алюминиевый экран
- Внешняя оболочка из ПВХ
- Внешний диаметр: около 6,5 мм

Технические характеристики:

- Комплекты мощностью от 300 до 3100 Вт с фиксированным сопротивлением для каждой величины мощности комплекта, 17 Вт/м при напряжении 230 В
- Удельная мощность кабеля: 17 Вт/м
- Устойчивый к воздействию ультрафиолета
- Максимальная рабочая температура внешней оболочки: 65°C
- Минимальный радиус изгиба: пятикратный диаметр кабеля
- Допуск на сопротивление проводника: -5/+10%
- Максимальное напряжение системы: 300/500 В



TXLP/1 — комплекты одножильного нагревательного кабеля, 17 Вт/м						
тип	Мощность при напряжении 230 В	Длина нагрева- тельного элемента (*)	Номинальное сопротивление нагревательно- го элемента	Наруж- ный диаметр	Вес одного комплекта	
	(Вт)	(M)	(Ом)	(MM)	(кг)	
TXLP/1 300/17	300	17,7	176,3	6,5	1,35	
TXLP/1 400/17	400	23,5	132,3	6,5	1,61	
TXLP/1 500/17	500	29,4	105,8	6,5	1,93	
TXLP/1 600/17	600	35,3	88,2	6,5	2,26	
TXLP/1 700/17	700	41,2	75,6	6,5	2,52	
TXLP/1 850/17	850	50,0	62,2	6,5	3,03	
TXLP/1 1000/17	1000	58,8	52,9	6,5	3,60	
TXLP/1 1250/17	1250	73,5	42,3	6,5	4,36	
TXLP/1 1400/17	1400	82,3	37,8	6,5	4,67	
TXLP/1 1750/17	1750	102,9	30,2	6,5	5,99	
TXLP/1 2200/17	2200	129,4	24,0	6,5	7,41	
TXLP/1 2600/17	2600	156,0	20,3	6,5	8,48	
TXLP/1 3100/17	3100	185,0	17,1	6,5	10,24	

^{*} В дополнение к этому, изделия поставляются с силовым кабелем питания длиной 2,25 м с каждой стороны

N-HEAT® MILLIMAT™ Нагревательный мат на основе тонкого двужильного кабеля

Нагревательные маты – это, как правило, сетка, которая выложена в форме рулона, а на нем зафиксирован нагревательный кабель. Нагревательные маты рассчитаны для укладки под плитку. Мощность кабеля предназначена и рассчитана для получения максимального комфорта в области тепла и уюта дома или офиса. Нагревательные маты или же, как их еще называют, тонкий теплый пол, используют для подогрева пола в помещениях, где требуются минимальные затраты поднятия его уровня.

Теплые полы на основе матов включают: кабельные секции, которые закрепленные на специальной сетке, ширина которой составляет около 50 см. Благодаря удобной конструкции мата, она обеспечивает удобство монтажа и установки пола.

Основными преимуществами нагревательных матов являются: во-первых, удобство во время монтажа; во-вторых, быстрый нагрев поверхности пола за счет того, что кабель находится близко к поверхности; в-третьих, толщина составляет около 4 мм. Немало важным остается тот момент, что при укладке нагревательных матов, у вас есть возможность установить систему под плитку при этом поднять пол на незначительную высоту. Этим фактором система привлекает все больше пользователей.

N-HEAT® MILLIMAT™ Нагревательный мат на основе тонкого двужильного кабеля

Применение:

MILLIMAT идеально подходит для реконструкции помещений всех типов. Мат представляет собой комплект двужильного нагревательного кабеля, прикрепленный к тонкой клейкой стекловолоконной сетке. Наружный диаметр нагревательного кабеля составляет около 4 мм. Комплект нагревательного кабеля поставляется с кабелем питания длиной 2,5 м.

Конструкция:

- Изоляция из фторэтиленпропилена (FEP)
- Провод заземления из луженой меди
- Стекловолоконная сетка
- Внешняя оболочка из ПВХ
- Алюминиевый экран
- Общая толщина 4,5 мм
- Ширина 50 см

Технические характеристики:

- Удельная мощность мата 150 Вт/м2.
- Общая мощность мата от 150 до 1800 Вт
- Максимальная рабочая температура внешней оболочки: +65°C
- Допуск на сопротивление проводника: -5 / +10 %
- Номинальное напряжение: 230 В

Скрытое безмуфтовое соединение SPLICE:

Скрытое безмуфтовое соединение - такое же тонкое и прочное, как и сам кабель, упрощает монтаж, поскольку не приходится переделывать черновой пол при монтаже.

MILLIMAT™ — 150 BT/m²						
Площадь мата	Выходная мощность	Длина мата	Ширина мата	Сопротивление нагревательного элемента, Ом		
(M²)	(Вт)	(M)	(M)	Мин. (-5%)	Номинал.	Макс. (+10%)
1,0	150*	2,0	0,5	388	335	352,7
1,5	225*	3,0	0,5	258,7	223,3	235,1
2,0	300*	4,0	0,5	194	167,5	176,3
2,5	375	5,0	0,5	155,2	134	141,1
3,0	450	6,0	0,5	129,4	111,6	117,6
3,5	525	7,0	0,5	110,9	95,7	100,8
4,0	600	8,0	0,5	97	83,7	88,2
5,0	750	10,0	0,5	77,6	67	70,5
6,0	900	12,0	0,5	64,7	55,8	58,8
7,0	1050	14,0	0,5	55,5	47,8	50,4
8,0	1200	16,0	0,5	48,5	41,8	44,1
10,0	1500	20,0	0,5	38,8	33,5	35,3
12,0	1800	24,0	0,5	32,4	27,9	29,4

^{*} Мат этого размера не поставляется со встроенным безмуфтовым соединением Splice Маты поставляются с силовым проводом питания длиной 2,5 м

N-HEAT® TXLP DRUM Одножильный нагревательный кабель общего назначения, поставляемый на барабанах

Нагревательный кабель TXLP идеально подходит для обогрева бетонных полов в зданиях. Он также используется в системах снеготаяния, для защиты водостоков и желобов крыш от обледенения и для подогрева грунта.

Конструкция:

- Многопроволочный резистивный проводник
- Изоляция из сшитого полиэтилена
- Проводник заземления из луженой меди
- Алюминиевый экран
- Внешняя оболочка из ПВХ
- Внешний диаметр: около 6,5 мм

Технические характеристики:

- Последовательное сопротивление
- Устойчивый к воздействию ультрафиолета
- Максимальная рабочая температура внешней оболочки: 65°C
- Минимальный радиус изгиба: пятикратный диаметр кабеля
- Допуск на сопротивление проводника: -5/+10%
- Максимальное напряжение системы: 300/500 В

TXLP на барабане — одножильный нагревательный кабель с различным удельным сопротивлением

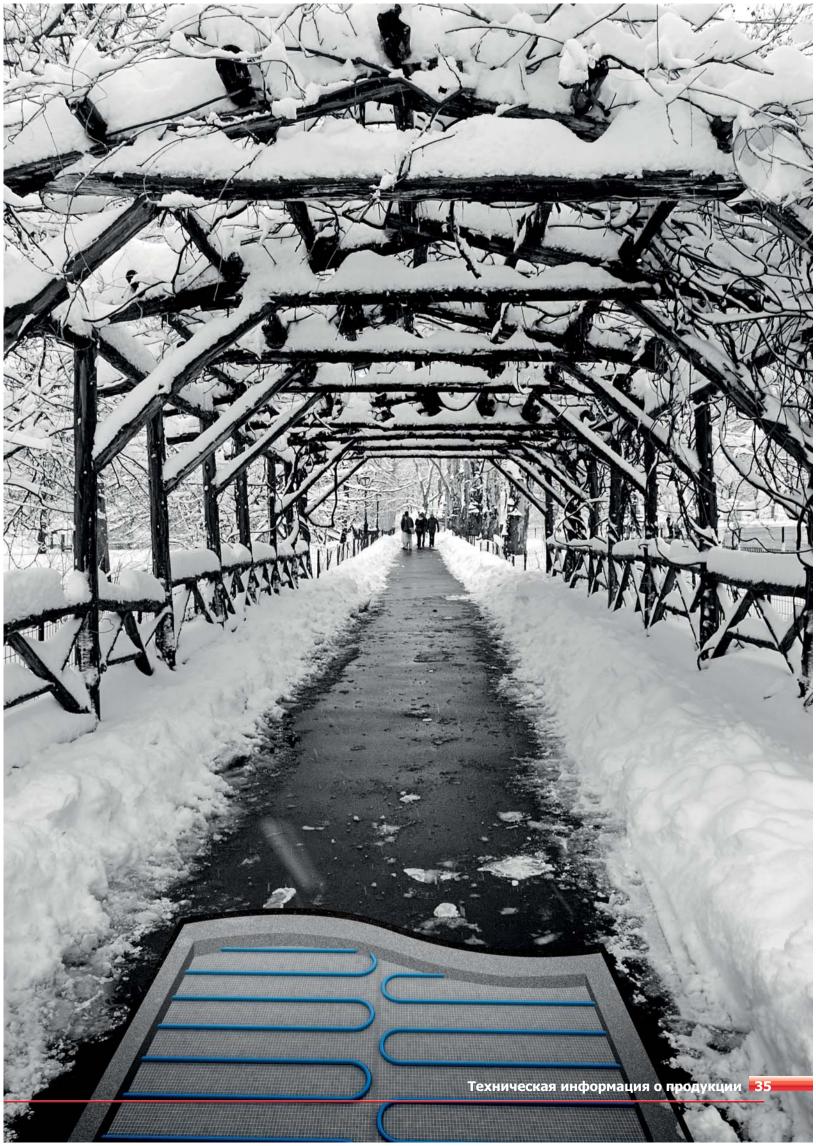
тип	Электрическое сопротивление	Наружный диаметр	Вес на 100 м	
	(Ом/м)	(мм)	(кг)	
TXLP 12,7 Om/m	12,70	6,0	4,6	
TXLP 7,7 Om/m	7,70	6,0	4,6	
TXLP 5,35 Om/m	5,35	6,0	4,6	
TXLP 3,5 Om/m	3,50	6,1	4,9	
TXLP 2,5 Om/m	2,50	6,1	5,1	
TXLP 1,4 Om/m	1,40	6,1	5,0	
TXLP 1,0 Om/m	1,00	6,3	5,2	
TXLP 0,7 Om/m	0,70	6,3	5,1	
TXLP 0,49 Om/m	0,49	6,3	5,3	
TXLP 0,39 Om/m	0,39	6,3	5,3	
TXLP 0,3 Om/m	0,3	6,3	5,3	
TXLP 0,25 Om/m	0,25	6,3	5,3	
TXLP 0,2 Om/m	0,2	6,3	5,3	
TXLP 0,13 Om/m	0,13	6,5	5,6	
TXLP 0,09 Om/m	0,09	6,3	5,3	
TXLP 0,07 Om/m	0,07	6,3	5,3	
TXLP 0,05 Om/m	0,05	6,5	5,8	
TXLP 0,02 Om/m	0,02	6,9	5,6	

N-HEAT® TXLP TWIN DRUM Двужильный нагревательный кабель общего назначения, поставляемый на барабанах

Применение:

Нагревательный кабель TXLP идеально подходит для обогрева бетонных полов в зданиях. Он также используется в системах снеготаяния, для защиты водостоков и желобов крыш от обледенения и для подогрева грунта. Данный кабель является универсальным и многоцелевым, и поэтому пожет применяться почти во всех случаях. TXLP TWIN ON DRUM может устанавливаться в железобетонную арматуру. TXLP TWIN ON DRUM может также устанавливаться непосредственно в асфальт при температуре не более 160 °C.

Конструкция:


- Однопроволочные резистивные проводники
- Изоляция из сшитого полиэтилена
- Проводник заземления из луженой меди
- Алюминиевый экран
- Внешняя оболочка из ПВХ
- Внешний диаметр: около 6,5 мм

Технические характеристики:

- Последовательное сопротивление
- Устойчивый к воздействию ультрафиолета
- Максимальная рабочая температура внешней оболочки: 65°C
- Минимальный радиус изгиба: пятикратный диаметр кабеля
- Допуск на сопротивление проводника: -5/+10%
- Максимальное напряжение системы: 300/500 В

TXLP на барабане — двужильный нагревательный кабель с различным удельным сопротивлением

тип	Электрическое сопротивление	Наружный диаметр	Вес на 100 м
	(Ом/м)	(мм)	(кг)
TXLP TWIN 13,1 Om/m	13.1	6.2	4,5
TXLP TWIN 8,6 Om/m	8.6	6.6	4,9
TXLP TWIN 5,7 Om/m	5.7	6.5	4,8
TXLP TWIN 3,7 Om/m	3.7	6.5	4,9
TXLP TWIN 2,5 Om/m	2.5	6.5	5,1
TXLP TWIN 1,5 Om/m	1.5	6.7	5,0
TXLP TWIN 1,08 Om/m	1.08	6.5	4,9
TXLP TWIN 0,73 Om/m	0.73	6.3	5,0
TXLP TWIN 0,48 Om/m	0.48	6.7	5,3
TXLP TWIN 0,32 Om/m	0.32	6.7	5,3
TXLP TWIN 0,18 Om/m	0.18	6.9	5,3
TXLP TWIN 0,13 Om/m	0.13	6.7	5,3
TXLP TWIN 0,09 Om/m	0.09	6.9	5,2
TXLP TWIN 0,07 Om/m	0.07	6.9	5,6
TXLP TWIN 0,05 Om/m	0.05	6.9	5,5

N-HEAT® TXLP/1, 28 Вт/м Комплект одножильного кабеля для систем снеготаяния

Применение:

Данные комплеты нагревательного кабеля TXLP имеют удельную мощность 28 Вт/м. Встроенные безмуфтовые соединения SPLICE с обоих концов надёжно обеспечивают водонепроницаемость по всей длине кабеля. Высокая удельная мощность и водонепроницаемые безмуфтовые соединения SPLICE делают эти комплекты особенно подходящими для использования вне помещений в системах снеготаяния и антиобледенения.

Конструкция:

- Изоляция из сшитого полиэтилена
- Проводник заземления из луженой меди
- Армированный алюминиевый экран
- Внешняя оболочка из ПВХ
- Цвет внешней оболочки: голубой
- Тип соединения с силовым кабелем питания: безмуфтовый
- Внешний диаметр: 6,5 мм

Технические характеристики:

- Мощность комплектов от 380 до 2800 Вт при напряжении 230 В
- Удельная мошность кабеля: 28 Вт/м
- Устойчивый к воздействию ультрафиолета
- Макс. температура наружной оболочки кабеля под напряжением: 65 °C
- Минимальный радиус изгиба: пятикратный диаметр кабеля
- Механическая прочность по стандарту IEC 60800: M2
- Предел распространения горения соответствует IEC 60332-1
- Длина силового питающего кабеля: 2,3 м
- Номинальное напряжение: 230 В

Комплекты одножильного нагревательного кабеля для систем снеготаяния							
Выходная мощность комплекта	Длина нагревательного элемента (*)	Номинальное сопротивление нагревательного элемента	Номинальное удельное сопротивление	Наружный диаметр	Вес		
(Вт)	(M)	(Ом)	(Ом/м)	(MM)	(кг)		
380	13,8	139,2	10	6,5	1,1		
640	22,9	82,7	3,6	6,5	1,6		
900	32,1	58,8	1,84	6,5	2		
1280	45,8	41,3	0,9	6,5	2,8		
1600	57,3	33,1	0,58	6,5	3,4		
1800	64	29,4	0,46	6,5	3,6		
2240	80,2	23,6	0,29	6,5	4,6		
2800	100	18,8	0,19	6,5	6,2		

^{*} К нагревательному элементу с обоих коцов присоединён отрезок силового питающего кабеля длиной 2,3 м

N-HEAT® TXLP/2R DEFROST SNOW Комплект двужильного нагревательного кабеля для систем снеготаяния

Применение:

DEFROST SNOW — готовые к монтажу комплекты двужильного нагревательного кабеля для систем снеготаяния, устанавливаемых на подъездных путях, дворовых открытых площадках, ступенях уличных лестниц и т. п. Могут укладываться непосредственно в горячий асфальт (160° C), покрываться бетоном, плитами или песком. Комплект DEFROST SNOW снабжен питающим кабелем длиной 10 м и встроенным безмуфтовым соединением SPLICE.

Конструкция:

- Однопроволочный резистивный проводник
- Однопроволочная силовая «обратная» жила
- Изоляция из сшитого полиэтилена
- Проводник заземления из луженой меди
- Алюминиевый усиленный экран
- Внешняя оболочка из ПВХ
- Интегрированный силовой питающий кабель
- Внешний диаметр: около 7,0 мм

Технические характеристики:

- Мощность комплектов от 640 до 3400 Вт при напряжении 230 В
- Удельная мощность кабеля: 28 Вт/м
- Устойчивый к воздействию ультрафиолета
- Макс. температура наружной оболочки кабеля под напряжением: 65°C
- Минимальный радиус изгиба: пятикратный диаметр кабеля
- Допуск на сопротивление проводника: -5/+10%
- Максимальное напряжение системы: 300/ 500 В
- Длина питающего кабеля: 10 м
- Номинальное напряжение:230 В
- Макс. температура асфальта: 160°C

DEFROST SNOW -	- комплекты двужи	льного нагреватель	ного кабеля для сис	тем снеготаяния
Выходная мощность	Длина нагрева- тельного элемента (*)	Номинальное сопротивление нагревательного элемента	Наружный диаметр	Bec
(Вт)	(M)	(Ом)	(мм)	(кг)
640	22,9	82,7	7,0	2,3
890	31,9	59,4	7,0	2,8
1270	45,4	41,7	7,0	3,7
1900	68,1	27,8	7,0	5,2
2700	96,4	19,6	7,0	7,0
3400	120,0	15,6	7,0	8,4

^{*} В дополнение к этому, изделия поставляются с силовым кабелем питания длиной 10 м DEFROST SNOW

N-HEAT® DEFROST PIPE / GUTTER Саморегулирующийся нагревательный кабель общепромышленного применения

Применение:

Defrost Pipe — саморегулирующийся нагревательный кабель применяется в системах антиобледенения для защиты крыш, водостоков и желобов от появления наледи, а также для обогрева труб и емкостей с целью защиты от замерзания или поддержания необходимой температуры до 65°C. Кабель является отрезным и может поставляться на барабанах. Кабель может нарезаться по длине непосредственно на месте с учетом требуемых размеров, то есть его точная монтажная длина может определяться без сложных расчетов. Саморегулирующие свойства кабеля увеличивают его безопасность и надежность. Кабель Defrost Pipe не перегревается и не перегорает даже при укладке с перехлестом.

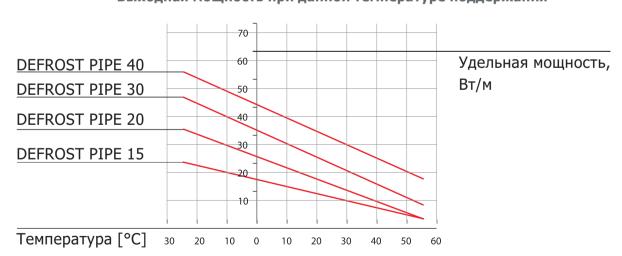
Особенностью саморегулирующегося нагревательного кабеля Defrost Pipe является возможность его использования без термоили метео - контроллеров. Отдача тепла кабелем изменяется в зависимости от температуры снаружи его оболочки, при повышении температуры кабель выделяет меньше тепла, при понижении температуры выделение тепла повышается автоматически. Причем это может происходить не по всей длине кабеля, а на разных его участках с различным значением выделяемого тепла. Это происходит благодаря конструктивной особенности кабеля, тепловыделяющий элемент - полимер (матрица), расположенный между жилами кабеля по всей его длине, изменяет количество токопроводящих каналов в зависимости от температуры среды, в которой он находится. Не смотря на эту отличающуюся возможность «саморегулирования» компания ООО «Разумный Дом» рекомендует использовать аппаратуру управления для обеспечения энергоэффективности установленной у Вас системы обогрева.

Конструкция:

- Никелированные медные шины
- Полупроводниковая полимерная матрица
- Изоляция: поперечно сшитый полиэтилен
- Алюминиевый экран
- Проводник заземления из луженой меди
- Внешняя оболочка из полиолефина

Технические характеристики:

- Мин. температура при монтаже: -45°C
- Макс. рабочая температура наружной оболочки кабеля под напряжением: 65°C
- Макс. рабочая температура наружной оболочки кабеля без напряжения: 80°C
- Исключение составляет кабель DEFROST PIPE 15, макс. температура отключения температура наружной оболочки кабеля без напряжения: 65°C
- Минимальный радиус изгиба: 25 мм
- Номинальное напряжение: 230 В
- Устойчив к воздействию ультрафиолета

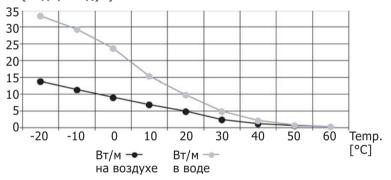


Кабель	DEFROST PIPE	экраном из а	люминиевой (фольги	
Тип АО Экран из алюминиевой	Мощность при 10°C	Наружны Ширина	й размер Высота	Сечение шины	Вес
фольги	(Вт/м)	(MM)	(MM)	(MM ²)	(кг/100 м)
DEFROST PIPE 15	15	8,0	5,5	2 x 0,56	5,3
DEFROST PIPE 20	20	13,6	5,5	2 x 1,23	9,1
DEFROST PIPE 30	30	13,6	5,5	2 x 1,23	9,1
DEFROST PIPE 40	40	13,6	5,5	2 x 1,23	9,1

N-HEAT® DEFROST PIPE / GUTTER Саморегулирующийся нагревательный кабель общепромышленного применения

DEFROST PIPE - значения но	максимальные минального тока					
тип	Темпера- тура	Макс. дл	ина отрезка	(м) и номин	іальный ток	нагрузки
	(°C)	6 A	10 A	16 A	20 A	25 A
DEFROST PIPE 15	+10	59	98	105	105	105
	0	50	83	97	97	97
	-10	43	72	91	91	91
	-20	38	64	85	85	85
	-40	31	52	77	77	77
DEFROST PIPE 20	+10	41	68	109	129	129
	0	34	57	92	115	119
	-10	30	50	79	99	111
	-20	26	44	70	87	104
	-40	21	35	56	71	88
DEFROST PIPE 30	+10	31	52	83	104	113
	0	45	71	89	105	105
	-10	23	39	63	78	98
	-20	21	35	56	69	87
	-40	17	28	45	57	71
DEFROST PIPE 40	+10	22	36	57	71	89
	0	19	31	50	62	78
	-10	17	28	44	55	69
	-20	15	25	40	50	62
	-40	13	21	33	42	52

Выходная мощность при данной температуре поддержания


N-HEAT® DEFROST WATER и комплекты DEFROST WATER KIT Саморегулирующийся нагревательный кабель для монтажа в трубопроводах холодного водоснабжения

Применение:

DEFROST WATER — саморегулирующийся нагревательный кабель, не содержащий галогенов, для защиты от промерзания трубопроводов холодного водоснабжения. Кабель предназначен для монтажа внутри трубопровода. Наружная оболочка кабеля разрешена для использования в трубопроводах с питьевой водой. Кабель DEFROST WATER поставляется на барабанах. DEFROST WATER KIT — это комплекты кабеля, имеющего определённую длину, и включающего концевую и переходную муфты и питающий кабель с вилкой европейского образца. Кабель DEFROST WATER может нарезаться по длине на месте с учетом требуемых размеров, при этом точная длина может определяться без сложных расчетов. Длина кабеля, входящего в комплекты DEFROST WATER KIT, изменяться не может. Мошность кабеля автоматически меняется при изменении температуры поверхности трубопровода. Однако рекомендуется использовать терморегулятор для ограничения времени работы кабеля в летнее время.

Выходная мощность при данной температуре (вода/воздух)

Конструкция:

- Шины из лужёной меди
- Полупроводниковая полимерная матрица
- Изоляция: Полиэтилен
- Алюминиевый экран
- Проводник заземления из луженой меди
- Внешняя оболочка из полиэтилена

Технические характеристики:

- Макс. температура наружной оболочки кабеля при подключении: 45°C
- Минимально допустимая температура воздуха при монтаже: -10°C
- Минимальный радиус изгиба: 15 мм
- Номинальное напряжение: 230 В
- Макс. ток нагрузки: 10 А

тип	Вес, кг
Комплект DEFROST WATER KIT 3 m	0,40
Комплект DEFROST WATER KIT 5 m	0,55
Комплект DEFROST WATER KIT 7 m	0,65
Комплект DEFROST WATER KIT 10 m	0,85
Комплект DEFROST WATER KIT 15 m	1,20
Комплект DEFROST WATER KIT 20 m	1,50
Комплект DEFROST WATER KIT 25 m	1,85

В остальных случаях комплект DEFROST WATER KIT имеет те же характеристики, что и представленный ниже кабель DEFROST WATER

тип	Мощность при 5°C	Наружный размер	Сечение шины	Вес	Макс. длина
	(Вт/м)	(MM)	(MM ²)	(кг/100 м)	(M)
DEFROST WATER	18,5 в воде 9 в воздухе	7,0	2 x 0,5	6,1	60 в воде 100 в воздухе

тип	Темп,	Пусковой ток	Макс, длина [м] Ток срабатывания автоматического	Макс, длина [м] Ток срабатывания автоматического
	(°C)	(A/M)	выключателя 10 A В воде	выключателя 10 A В воздухе
DEFROST WATER	5	0,2	60	100
	0	0,3	54	90
	-10	0,4	42	70
	-20	0,5	30	50
	-30	0,7	24	40

НАДЕЖНЫЕ И ИНТЕЛЛЕКТУАЛЬНЫЕ РЕШЕНИЯ ДЛЯ КАБЕЛЬНОГО ОБОГРЕВА ПРЕДНАЗНАЧЕНЫ ДЛЯ УДОВЛЕТВОРЕНИЯ ЛЮБЫХ ПОТРЕБНОСТЕЙ

Основой каждого успешного решения для кабельного обогрева является интеграция высококачественной системы управления. Контроллеры серии ОЈ Microline® и Nexans разработаны с целью установки нового профессионального стандарта термостата, при этом обеспечивая высокое качество, надежность и современный дизайн. Термостаты серии ОЈ Microline® и Nexans дают системным интеграторам и монтажникам гибкое и легко используемое решение, отвечающее их профессиональным и техническим требованиям. Они могут чувствовать себя спокойно, зная, что они предоставляют конечным пользователям не просто устройство, регулирующее температуру, а профессиональную технику с интуитивным управлением, обеспечивающую высокую степень комфорта и экономию электроэнергии.

OJ ELECTRONICS

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

Программируемый термостат «Все в одном» для электрического программируемый гермостат «Все в Адном» для электрического обогрева пола создает оптимальный комфорт при минимально возможном потреблении энергии. 2" цветной сенсорный дисплей, удобный интерфейс, мониторинг потребления энергии, QR-коды для считывания информации, совместимость с существующими на рынке датчиками температуры пола.

OCD5-1999

- диапазон температур: +5 ...+40°С;
- цветной резистивный сенсорный
- нагрузка 16А/3600 Вт • утопленный монтаж:

• дисплей 220 x 176 пикселей ТFT

- напряжение: 220 В 50 Гц:
- степень зашиты: IP21.
- размер (Д x Ш x В): 80x80x48

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

Программируемый терморегулятор для установки в монтажную коробку внутри помещения. Регулятор от компании Nexans, который обладает огромным удобным цифровым дисплеем. Предназначен для управления системами теплых полов.

MILLITEMP **CDFR-003 Nexans**

- большой цифровой дисплей с подсветкой
- программирование:
- 4 события в сутки, 5+2 дни нагрузка макс.: 16 А / 3600 Вт

ДЛЯ ТЕПЛОГО ПОЛА

- диапазон температур: +5...+40°C
- размер: 84х84х40 мм
- степень защиты: IP21
- функция антизамораживания
- утопленный монтаж

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

Терморегулятор для настенного монтажа. Новый ОЈ Microline® Тип ОСD4 4-х программный термостат с контролем времени. Термостат с контролем времени "Все в одном", для полов с электрическим подогревом, совмещает в себе заданные оптимальный комфорт и минимальное потребление электроэнергии.

OCD4-1999

Терморегулятор для настенного монтажа. Новый ОЈ Microline® Тип OCC4 4-х программный термостат с контролем времени. Термостат с контролем времени "Все в одном", для полов с электрическим подогревом, совмещает в себе заданные оптимальный комфорт и минимальное потребление электроэнергии.

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР

OCC4-1991

OCD4 - 1999 Термостат с контролем времени с одним датчиком температуры воздуха и одним датчиком температуры пола;

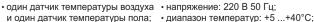
- нагрузка 16А/3600 Вт
- диапазон температур: +5 +40°С;
- утопленный монтаж; напряжение: 220 В 50 Гц;
- степень защиты: IP21; • размер (Д x Ш x В): 80x80x48;
- ОСС4 1991 Термостат с контролем времени с одним датчиком температуры пола;
- нагрузка 16А/3600 Вт
- диапазон температур: +5 +40°C;
- степень защиты: IP21; • утопленный монтаж;
- напряжение: 220 B 50 Гц; размер (Д x Ш x B): 80x80x48;

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

Программируемые терморегуляторы ОСD3 - наилучший выбор для создания оптимального теплового комфорта с минимальными энергозатратами. Терморегуляторы управляют Вашей системой обогрева, включая ее в определенные промежутки времени в разные дни недели. Существует возможность установить 4 режима (события) на каждый день с разной температурой

OCD3-1999

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА


Терморегулятор для настенного монтажа. Новый ОЈ Microline® Тип ОСС4 4-х программный термостат с контролем времени. Термостат с контролем времени "Все в одном", для полов с электрическим подогревом, совмещает в себе заданные оптимальный комфорт и минимальное потребление электроэнергии.

OCC3-1991

- нагрузка: 16А / 3600 Вт; • утопленный монтаж:
- размер (Д х Ш х В): 80х80х48
- один датчик температуры пола;
- утопленный монтаж;
- нагрузка: 16А / 3600 Вт;
- диапазон температур: +5 ...+40°C:
- степень защиты: IP21;
- размер (Д x Ш x B): 80x80x48

- степень защиты: IP21;
- напряжение: 220 В 50 Гц;

OJ ELECTRONICS

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

OCD2 – наилучший выбор для создания оптимального теплового комфорта с минимальными энергозатратами. Терморегуляторы управляют Вашей системой обогрева, включая ее в определенные промежутки времени в разные дни недели. Существует возможность установить 4 режима (события) на каждый день с разной температурой.

OCD2-1999

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

ОСС2 – наилучший выбор для создания оптимального теплового комфорта с минимальными энергозатратами. Терморегуляторы комфорта с минимальными энергозатратами. Терморегуляторы управляют Вашей системой обогрева, включая ее в определенные промежутки времени в разные дни недели. Существует возможность установить 4 режима (события) на каждый день с разной температурой.

OCC2-1991

- датчики: пола на проводе 3 м (в комплекте); воздуха (встроенный);
- нагрузка: 16А / 3600 Вт;
- утопленный монтаж;
- напряжение: 220 В 50 Гц:
- диапазон температур: +5 ...+40°С;
- степень защиты: IP21;

• диапазон температур: +5 ... +40°С;

• размер (Д х Ш х В): 80х80х48

• степень защиты: IP21;

- размер (Д х Ш х В): 80х80х48
- датчики: пола на проводе 3 м (в комплекте);
- нагрузка: 16A / 3600 Вт;
- утопленный монтаж;
- напряжение: 220 В 50 Гц;
- диапазон температур: +5+40°С;
- степень защиты: IP21;
- размер (Д х Ш х В): 80х80х48

ПРОГРАММИРУЕМЫЙ ТЕРМОРЕГУЛЯТОР **ДЛЯ СИСТЕМ ОТОПЛЕНИЯ**

ОСС2 – наилучший выбор для создания оптимального теплового комфорта с минимальными энергозатратами. Терморегуляторы управляют Вашей системой обогрева, включая ее в определенные промежутки времени в разные дни недели. Существует возможность установить 4 режима (события) на каждый день с разной температурой.

OCC2-1999

<u>ЦИФРОВОЙ ТЕРМОРЕГУЛЯТОР</u> ДЛЯ ТЕПЛОГО ПОЛА

Терморегулятор с беспроводным инфракрасным датчиком температуры пола, который монтируется непосредственно на стену на высоте минимум 30 см от поверхности пола. Датчик нельзя устанавливать за шторами или другими предметами, которые будут перекрывать доступ инфракрасному лучу датчика к поверхности

OTD2-1655

Датчик: выносной инфракрасный пола (в комплекте)
• нагрузки · 16A / 3600 Вт • предотвращения промерзания

- нагрузки : 16А / 3600 Вт
- утопленный монтаж
- напряжение: 220 В 50 Гц
- диапазон температур: 0 ...+40°C
- степень защиты: IP21 размер (Д х Ш х В):
- терморегулятора 81х81х38
- путем подключения через
- выпрямительный диод
- инфракрасного датчика 81х81х20 • возможность подключения
- к реле времени

ЦИФРОВОЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

• датчики:воздуха (встроенный);

• нагрузка: 16А / 3600 Вт;

напряжение: 220 В 50 Ги;

• утопленный монтаж

Простой в использовании терморегулятор. Цифровой дисплей позволяет удобно устанавливать необходимую температуру. Включение и выключение терморегулятора происходит с помощью белой кнопки-выключателя. Красная кнопка используется для повышения температуры, синяя для понижения. Между красной и синей кнопками находится кнопка программирования температур. Красный индикатор светодиода показывает, что обогрев включен.

OTD2-1999

ЦИФРОВОЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА

Терморегулятор с проводным инфракрасным датчиком температуры пола, который монтируется непосредственно на стену на высоте минимум 30 см от поверхности пола. Датчик нельзя устанавливать за шторами или другими предметами, которые будут перекрывать доступ инфракрасному лучу датчика к поверхности пола.

OTN2-1666

- датчики: пола на проводе 3 м (в комплекте); воздуха (встроенный); возможность управления теплым полом без датчиков
- нагрузка: 16A / 3600 Вт
- утопленный монтаж
- напряжение: 220 В 50 Гц
- диапазон температур: 0 ...+40°C степень защиты: IP21
- размер (Д х Ш х В): 84х84х40 возможность подключения
- к реле времени • предотвращение замерзания путем подключения через выпрямительный
- датчик: выносной инфракрасный пола (в комплекте)
- нагрузки : 16А / 3600 Вт утопленный монтаж
- напряжение: 220 В 50 Гц
 диапазон температур: 0 ...+40°C
- степень защиты: IP21 • предотвращения промерзания путем
- подключения через выпрямительный
- размер (Д х Ш х В):
- терморегулятора 81х81х38 • инфракрасного датчика - 81х81х20
- возможность подключения к реле времени

OJ ELECTRONICS

ЦИФРОВОЙ ТЕРМОРЕГУЛЯТОР ДЛЯ СИТЕМ ОТОПЛЕНИЯ

Простой в использовании терморегулятор. Цифровой дисплей позволяет удобно устанавливать необходимую температуру. Включение и выключение терморегулятора происходит с помощью белой кнопки-выключателя. Красная кнопка используется для повышения температуры, синяя - для понижения. Между красной и синей кнопками находится кнопка программирования температур. Красный индикатор светодиода показывает, что обогрев включен.

OTN2-1999

ЦИФРОВОЙ ТЕРМОРЕГУЛЯТОР для теплого пола

Простой в использовании терморегулятор. Цифровой дисплей позволяет удобно устанавливать необходимую температуру. Включение выключение терморегулятора происходит с помощью белой кноп-ки-выключателя. Красная кнопка используется для повышения тем-пературы, синяя - для понижения. Между красной и синей кнопками находится кнопка программирования температур. Красный индика-тор светодиода показывает, что обогрев включен.

OTN2-1991

- встроенный датчик температуры воздуха
- нагрузка: 16А / 3600 Вт
- утопленный монтаж напряжение: 220 В 50 Гц
- диапазон температур: 0 ...+40°C степень защиты: IP21
- размер (Д х Ш х В): 84x84x40
- возможность подключения
- к реле времени
- датчик температуры пола на проводе 3 м (в комплекте); нагрузка: 16А / 3600 Вт;
- утопленный монтаж; напряжение 220 В 50 Гц;

ДЛЯ ТЕПЛОГО ПОЛА

- диапазон температур +5 ...+40°С; степень защиты: IP21;
- размер (Д х Ш х В): 84х84х40;
- возможность подключения
- к реле времени

МЕХАНИЧЕСКИЙ ТЕРМОРЕГУЛЯТОР

МЕХАНИЧЕСКИЙ ТЕРМОРЕГУЛЯТОР

МЕХАНИЧЕСКИЙ ТЕРМОРЕГУЛЯТОР ДЛЯ СИСТЕМ ОТОПЛЕНИЯ

Включение и выключение системы обогрева происходит с помощью вмонтированного выключателя. Для изменения температуры используют колесико регуляции температуры. Красный индикатор светодиода показывает, что обогрев включен.

OTN-1999

OTN-1991

Включение и выключение системы обогрева происходит с по-

мощью вмонтированного выключателя. Для изменения темпе-

ратуры используют колесико регуляции температуры. Красный

индикатор светодиода показывает, что обогрев включен.

- датчик температуры воздуха (встроенный):
- нагрузка: 16A / 3600 Вт; • утопленный монтаж;
- напряжение 220 В 50 Гц;
- диапазон температур +5 ...+40°С:
- степень защиты: IP20 • размер (Д x Ш x B) 80x80x50;
- возможность подключения
- к реле времени

• датчик температуры пола на проводе 3 м (в комплекте); • нагрузка: 14А / 3200 Вт

ДЛЯ ТЕПЛОГО ПОЛА

- утопленный монтаж;
- напряжение 220 В 50 Гц;
- диапазон температур +5 ...+40°C;
- степень защиты: IP21
- размер (Д x Ш x B) 80x80x50;
- возможность подключения
- к реле времени

МЕХАНИЧЕСКИЙ ТЕРМОРЕГУЛЯТОР ДЛЯ СИСТЕМ ОТОПЛЕНИЯ

Терморегулятор для настенного монтажа. Включение/выключение и изменение температуры происходит с помощью колесика регуляции температуры. Для выключения необходимо колесико повернуть на отметку 0°С. Красный индикатор светодиода показывает, что обогрев включен.

MTU2-1999

MTU2-1991

Терморегулятор для настенного монтажа. Включение/выклю-

чение и изменение температуры происходит с помощью

колесика регуляции температуры. Для выключения необходимо

колесико повернуть на отметку 0°C. Красный индикатор светоди-

- датчик температуры воздуха (встроенный);
- нагрузка 16A / 3600 Вт;
- настенный монтаж:
- напряжение 220 В 50 Гц;
- диапазон температур +5 ...+40°C;
- степень защиты ІР20;
- размер (Д х Ш х В) 84х84х28;
- возможность подключения реле времени
- датчик температуры пола на проводе 3 м (в комплекте);
- нагрузка 16А / 3600 Вт;
- настенный монтаж:
- напряжение 220 В 50 Гц;
- диапазон температур +5 ...+40°C;
- степень защиты IP20;
- размер (Д х Ш х В) 84х84х28;
- возможность подключения реле времени

OI ELECTRONICS

МЕХАНИЧЕСКИЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ОТОПЛЕНИЯ С МОНТАЖОМ НА DIN-РЕЙКУ

Терморегулятор для монтажа на DIN-рейку. Рекомендуется для управления системами электрического подогрева пола й электрического отопления помещений. Включение/выключение и изменение температуры происходит с помощью колесика регуляции температуры. Для выключения необходимо колесико повернуть на отметку 0°C. Красный индикатор светодиода показывает, что обогрев включен.

ETV-1999

- датчик температуры воздуха настенный (в комплекте);
- нагрузка 16A / 3500 Вт;
- монтаж на DIN-рейку; напряжение 220 В 50 Гц;
- диапазон температур 0....+40°С;
- степень защиты IP20;
- размер (В х Ш х Т) 86х36х58 мм; фиксированный перепад температур, активирующий подачу тепла 0,4°C;
- возможность подключения реле времени

МЕХАНИЧЕСКИЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА С МОНТАЖОМ НА DIN-РЕЙКУ

Терморегулятор для монтажа на DIN-рейку. Рекомендуется для управления системами электрического подогрева пола и электриуправления отогования ответь прического подогрева пола и электрит-ческого отопления помещений. Включение/Выключение и мяжене-ние температуры происходит с помощью колесика регуляции температуры. Для выключения необходимо колесико повернуть на отметку 0°C. Красный индикатор светодиода показывает, что обогрев включен.

ETV-1991

- датчик температуры пола на проводе 3 м (в комплекте);
- нагрузка 16А / 3500 Вт;
- монтаж на DIN-рейку;
- напряжение 220 В 50 Гц;
- диапазон температур 0....+40°С;
- степень защиты IP20;
- размер (В х Ш х Т) 86х36х58 мм; фиксированный перепад температур, активирующий подачу тепла 0,4°C;
- возможность подключения реле времени

МЕХАНИЧЕСКИЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ТЕПЛОГО ПОЛА С МОНТАЖОМ НА DIN-РЕЙКУ

Терморегулятор для монтажа на DIN-рейку. Рекомендуется для управления системами электрического подогрева пола и электрического отопления помещений.

ETN/F-2P-1441

- датчики температуры пола на проводе 3 м (в комплекте); • нагрузка: 16A / 3500 Вт;
- монтаж на DIN-рейку;
- напряжение 220 В 50 Гц; • диапазон температур 0....+35°С;
- степень защиты: IP20;
- размер (Д х Ш х В) 86х52.5х58 мм;
- устанавливаемое понижение температуры +3+10°С;
- устанавливаемый перепад температур, активирующий подачу тепла 0,3 6°С;
- возможность подключения к реле времени

УНИВЕРСАЛЬНЫЙ ЦИФРОВОЙ ТЕРМО-РЕГУЛЯТОР С МОНТАЖОМ НА DIN-РЕЙКУ

Терморегулятор «все в одном» для монтажа на DIN-рейку тонким датчиком температуры пола ETF-144/99T (в комплекте).

ETN4-1999

- большой цифровой дисплей;
- защита от детей;
- возможность использовать с датчиком t пола и/или с
- выносным датчиком t воздуха; возможность управления теплым полом без датчиков;
- нагрузка 16А / 3500 Вт;
- напряжение 230 В
- +/- 10% 50/60 Fu:
- лиапазон температур
- -19.5 ...+70°C;
- класс защиты корпуса IP20;
- размер (ВхШхТ) 86х52,5х58 мм

МЕХАНИЧЕСКИЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ АНТИОБЛЕДИНЕНИЯ С МОНТАЖОМ НА DIN-РЕЙКУ

Используется для управления антиобледенительными кабельными системами обогрева в водостоках на небольших объектах, например коттеджах.

- датчик ЕТГ-744/99 наружный температуры воздуха (в комплекте);
- нагрузка 16А / 3500 Вт; монтаж на DIN-рейку;
- напряжение 220 В 50 Гц;
- диапазон температур: мин. темп. (LOW) -15 ...0° С; макс.темп. (HIGH) 0+10°С;
- степень защиты IP20;
- размер (В х Ш х Т) 86х52.5х58 мм;
- перепад температур, активирующий подачу тепла 0,4°С

МЕХАНИЧЕСКИЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ АНТИОБЛЕДИНЕНИЯ С МОНТАЖОМ НА DIN-РЕЙКУ

Используется для растапливания снега и льда в системах антиобледенения и снеготаяния на небольших объектах. Регистрирует температуру и влажность.

- нагрузка 16А / 3500 Вт;
- монтаж на DIN-рейку:
- напряжение 220 В 50 Гц; диапазон температур 0+10°С;
- степень защиты IP20;
- размер (В х Ш х Т) 86х52х59 мм; регулируемое время принудительной работы
- 1 5 часов: • перепад температур.

ЦИФРОВОЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ АНТИОБЛЕДИНЕНИЯ С МОНТАЖОМ НА DIN-РЕЙКУ

Обеспечивает одновременное управление обогревом двух зон: например, системы антиобледенения крыши и снеготаяния открытой площадки. Регистрирует наличие влаги и измеряет

ETO2-4550

- нагрузка 3 х 16А/3500Вт;
- 2-е зоны управления 2 х 16А/3500Вт; монтаж на DIN-рейку или стену;
- напряжение 220 В 50 Гц;
- диапазон температур -20
- степень защиты IP20;
- размер (ВхШхТ):
- без крышки 90х156х45 мм; с крышкой 170х162х45 мм;
- регулируемое время
- принудительной работы до 18 часов;
- перепад температур,
- активирующий подачу тепла 0,3°C

МЕХАНИЧЕСКИЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ ПОДДЕРЖАНИЯ ТЕМПЕРАТУРЫ С MÖHTAЖОМ НА DIN-РЕЙКУ

Терморегулятор для регулирования температуры в промышленных системах, например, в системах поддержки температур трубопроводов и емкостей. Также может использоваться во всех других системах, где необходимо поддерживание температуры в диапазоне -10 ... +50°C

ETI-1551

- нагрузка 10А / 2200 Вт;
- монтаж на DIN-рейку;
 напряжение 220 В 50 Гц;
- диапазон температур: -10+50°C;
- степень защиты ІР20;
- размер (В х Ш х Т) 86х36х58 мм
- регулируемый перепад температур, активирующий подачу тепла: 0,3 6°C

МЕХАНИЧЕСКИЙ КОНТРОЛЛЕР ДЛЯ СИСТЕМ ПОДДЕРЖАНИЯ ТЕМПЕРАТУРЫ С МОНТАЖОМ НА DIN-РЕЙКУ

Терморегулятор для регулирования температуры в промышленных системах, например, в системах поддержки температур трубопроводов и емкостей. Также может использоваться во всех других системах, где необходимо поддерживание температуры в диапазоне +10....+110°

ETI-1221

- нагрузка 10А / 2200 Вт;
- монтаж на DIN-рейку;
- напряжение 220 В 50 Гц;
- диапазон температур:
- +10....+110°C;
- степень защиты ІР20:
- размер (В x Ш x T) 86x36x58 мм
- регулируемый перепад температур, активирующий подачу тепла:

0,5 10°C

ДАТЧИК ТЕМПЕРАТУРЫ ПОЛА

Датчик температуры пола на проводе длиной 3 м. Используется для поддержания комфортной температуры пола.

ETF-144/99A

- размер датчика 7.2x5.5x21.5 мм;
- длина датчика темературы 3м
- тип чувствительного элемента NTC 12k (при $+25^{\circ}$ C = 12 k Ω)
- диапазон (-20°C-+70°C
- класс защиты ІР67

НАСТЕННЫЙ ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ

Настенный датчик температуры воздуха в помещении. Используется для регулирования температуры воздуха в помещении.

ETF-944/99-H

- размер 84х84х28;
- диапазон температур -20 ... +70°С;
- класс защиты IP20

НАРУЖНЫЙ ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА

Наружный датчик температуры воздуха. Регистрирует

ETF-744/99

- размер 65х50х35 мм:
- диапазон температур -50 ... +70°С;
- класс защиты IP54

OJ ELECTRONICS

ДАТЧИК ТЕМПЕРАТУРЫ ДЛЯ ТРУБОПРОВОДОВ И ЕМКОСТЕЙ

Датчик температуры для трубопроводов и емкостей

ETF-622

- монтаж на поверхности объекта обогрева
- размер медной части 8х12 мм
- диаметр отверстия 3.5 мм
- диапазон температур -40 ... +120°C

УНИВЕРСАЛЬНЫЙ ДАТЧИК ТЕМПЕРАТУРЫ

Универсальный датчик температуры

- монтаж на поверхности объекта обогрева
- материал: латунь
- диаметр 6.5 мм длина: 50 мм
- диапазон температур -40 ... +120°C

ДАТЧИК ВЛАГИ И ТЕМПЕРАТУРЫ

Датчик грунта с кабелем длиной 10м. Регистрирует температуру и влажность. Предназначен для установки на поверхности грунта за пределами помещения на открытых площадках. Возможно установить два датчика типа ETOG.

ETOG-55

- размер: высота 32 мм, диаметр 60мм;
- диапазон температур -50 ... +70°С;
- класс защиты IP68

ДАТЧИК ВЛАГИ ДЛЯ ВОДОСТОКОВ

Датчик для водостоков с кабелем длиной 10м. Регистрирует влажность. Предназначен для установки в желобах, водостоках и т.п. Может быть установлен вместе с внешним датчиком температуры ETF -744/99. При необходимости можно подключить параллельно два датчика типа ETOR.

- размер 105х30х13 мм;
- диапазон температур -50 ... +70°С;
- класс зашиты IP68

ДАТЧИК ВЛАГИ И ТЕМПЕРАТУРЫ . ДЛЯ ГРУНТА С ОСНОВАНИЕМ

Датчик влаги и температуры для грунта предназначен для установки на открытых площадях с использованием цилиндрического основания ETOK-1. Основание ETOK-1 для установки датчика ETOG-56 поставляется с деревянной заглушкой для предохранения основания от попадания посторонних предметов во время установки, а также для предотвращения засорения отверстия для подсоединения изоляционной трубки для протяжки кабеля.

ETOG-56

- класс защиты корпуса: ІР 68;
- длина кабеля: 25 м:
- температура окружающей среды: -50...+70°С;
- размеры датчика: высота 32мм, диаметр 60мм;
- размеры основания: высота 78мм, диаметр 63,5 мм

ДАТЧИК ВЛАГИ И ТЕМПЕРАТУРЫ ГРУНТА

Датчик грунта с кабелем длиной 10м. Регистрирует температуру и влажность. Предназначен для установки на поверхности грунта за пределами помещения на открытых площадках. Возможно установить два датчика типа ETSG.

- размер: 350х50х25 мм;
- диапазон температур -50 ... +70°C; класс защиты IP68

АКСЕССУАРЫ / Системные принадлежности

Разумный дом 🏠

Комплект муфт для саморегулирующегося кабеля (соединение и оконцевание)

- 1. Труба термоусадочная 19/6 с клеевым слоем
- 2. Труба термоусадочная 12/4 с клеевым слоем
- 3. Труба термоусадочная 8/4
- 4. Труба термоусадочная 6/3
- 5. Гильзы соединительные 2,5 мм²
- 6. Вулканизирующийся герметик

Комплект муфт для одножильного резистивного кабеля (соединение одного кабеля)

Состав комплекта:

- 1. Труба термоусадочная 19/6 с клеевым слоем
- 2. Труба термоусадочная 12/4 с клеевым слоем
- 3. Труба термоусадочная 6/3
- 4. Гильза соединительная 1,5 2,5 мм²
- 5. Вулканизирующийся герметик

Комплект муфт для двухжильного резистивного кабеля (соединение и оконцевание)

Состав комплекта:

- 1. Труба термоусадочная 19/6 с клеевым слоем
- 2. Труба термоусадочная 12/4 с клеевым слоем
- 3. Труба термоусадочная 6/3
- 4. Гильза соединительная 1,5 2,5 мм²
- 5. Вулканизирующийся герметик

Элемент крепления кабеля в трубах «косичка»

Описание:

- 1. Материал крепления медь, алюминий
- 2. Трос в ПВХ изоляции 3 мм
- 3. Расстояние между креплениями 20 см

Элемент крепления кабеля в желобах

Описание:

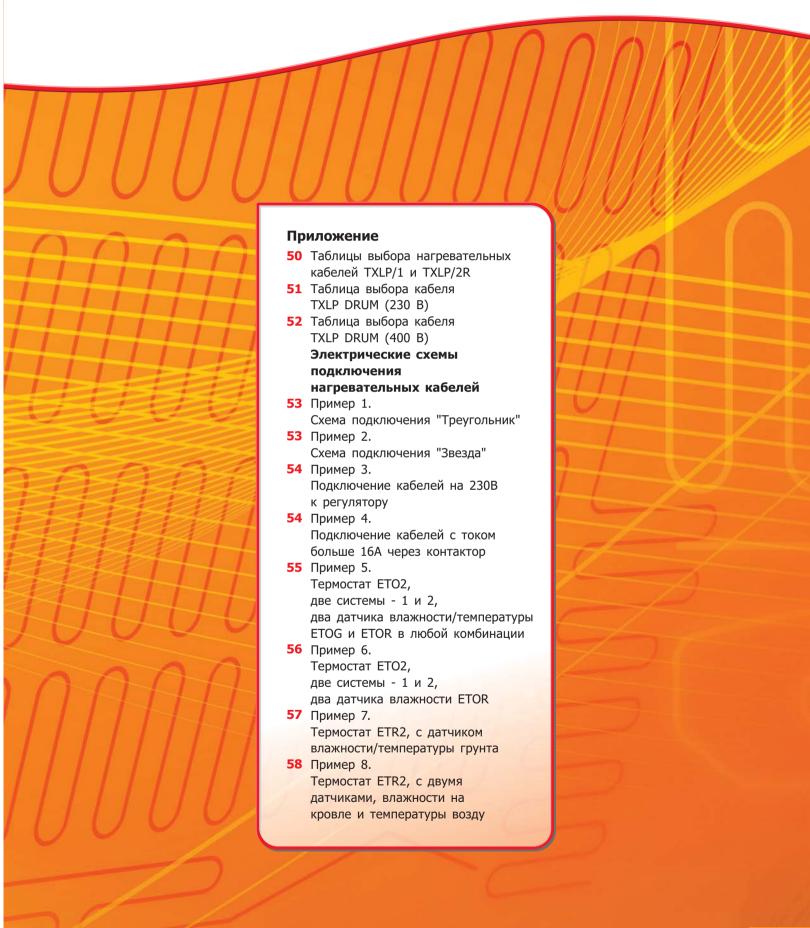
- 1. Материал крепления медь, алюминий
- 2. Расстояние между зажимами - 70 мм

в желобах

Описание:

- 1. Материал крепления пластик
- 2. Расстояние между зажимами - 60 мм

Монтажная лента



Описание:

- 1. Материал крепления оцинкованная сталь
- 2. Расстояние между креплениями - 20 мм, 25 мм

Часть 4

Приложение

Таблицы выбора нагревательных кабелей TXLP/1 и TXLP/2R

	Кабель	нагрев	ательный од	дножильный ТХ	LP/1, 17B	Вт/м	
Марка кабеля	Мощно пр	сть, Вт	Длина*, м	Сопротивление, Ом	Пло	ощадь обогр м²	рева,
	230 B	220 B		ОМ	170 BT/M ²	136 Вт/м²	112 BT/M ²
TXLP/1 300/17	300	275	17,6	176,3	1,8	2,2	2,6
TXLP/1 400/17	400	366	23,5	132,2	2,4	2,9	3,5
TXLP/1 500/17	500	458	29,4	105,8	2,9	3,7	4,4
TXLP/1 600/17	600	551	35,3	88,2	3,5	4,4	5,3
TXLP/1 700/17	700	643	41,2	75,9	4,1	5,2	6,2
TXLP/1 850/17	850	780	50,0	62,2	5,0	6,3	7,5
TXLP/1 1000/17	1000	917	58,8	52,9	5,9	7,4	8,8
TXLP/1 1250/17	1250	1147	73,5	43,0	7,4	8,2	11,0
TXLP/1 1400/17	1400	1284	82,3	37,8	8,2	10,3	12,3
TXLP/1 1750/17	1750	1605	102,9	30,2	10,3	12,9	15,4
TXLP/1 2200/17	2200	2019	129,4	24,0	12,9	16,2	19,4
TXLP/1 2600/17	2600	2434	156,0	20,1	15,6	19,5	23,4
TXLP/1 3100/17	3100	2886	185,0	17,1	18,6	23,2	27,8

 $^{^{*}}$ дополнительно с обеих сторон по 2,25м «холодного» медного кабеля питания сечением 2 х 1,0 мм2

	Кабель	нагрев	ательный ді	вужильный TXL	P/2R, 17B	Бт/м	
Марка кабеля	Мощно пр	ость, Вт	Длина*, м	Сопротивление, Ом	Пло	ощадь обогр м²	рева,
	230 B	220 B		ОМ	170 Вт/м ²	136 Вт/м ²	112 BT/M ²
TXLP/2R 200/17	200	183	11,8	264,5	1,2	1,5	1,8
TXLP/2R 300/17	300	275	17,6	176,3	1,8	2,2	2,6
TXLP/2R 400/17	400	367	23,5	132,5	2,4	2,9	3,5
TXLP/2R 500/17	500	458	29,3	105,8	2,9	3,7	4,4
TXLP/2R 600/17	600	550	35,2	88,5	3,5	4,4	5,3
TXLP/2R 700/17	700	640	41,0	75,9	4,1	5,1	6,2
TXLP/2R 840/17	840	776	49,7	60,7	5,0	6,2	7,5
TXLP/2R 1000/17	1000	910	58,3	53,4	5,8	7,3	8,7
TXLP/2R 1250/17	1250	1130	72,4	43,0	7,2	9,1	10,9
TXLP/2R 1370/17	1370	1261	80,8	38,5	8,1	10,1	12,1
TXLP/2R 1700/17	1700	1560	100,0	31,1	10,0	12,5	15,0
TXLP/2R 2100/17	2100	1930	123,7	25,4	12,4	15,5	18,6
TXLP/2R 2600/17	2600 2411		154,5	20,1	15,5	19,3	23,2
TXLP/2R 3300/17	3300	3027	194,0	16,1	19,4	24,3	29,1

^{*} дополнительно 2,25 м «холодного» медного кабеля питания сечением 2 х 1,0 мм

Таблица выбора кабеля TXLP DRUM (230 B)

OM	ı/м 12	,7	01	м/м 7	,7	Ом	ı/м 5,	35	Oı	м/м 3,	,5	Oı	и/м 2,	,5	Or	м/м 1 ,	,4	Ом	ı/м 1 ,	0	01	и/м 0,	7	Or	м/м 0,4	49
Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт
30	11,8	353	30	15,1	454	30	18,2	545	30	22,4	673	30	26,6	797	30	35,5	1065	30	42,0	1260	30	50,2	1506	30	60,0	1800
29	12,0	348	29	15,4	446	29	18,5	535	29	22,8	662	29	27,0	783	29	36,1	1047	29	42,7	1239	29	51,0	1480	29	61,0	1769
28	12,2	342	28	15,7	439	28	18,8	526	28	23,2	651	28	27,5	770	28	36,7	1029	28	43,5	1217	28	52,0	1455	28	62,1	1739
27	12,4	335	27	16,0	431	27	19,1	517	27	23,7	639	27	28,0	756	27	37,4	1010	27	44,3	1195	27	52,9	1428	27	63,2	1707
26	12,7	329	26	16,3	423	26	19,5	507	26	24,1	627	26	28,5	742	26	38,1	991	26	45,1	1173	26	53,9	1402	26	64,4	1675
25	12,9	323	25	16,6	414	25	19,9	497	25	24,6	615	25	29,1	727	25	38,9	972	25	46,0	1150	25	55,0	1375	25	65,7	1643
24	13,2	316	24	16,9	406	24	20,3	487	24	25,1	602	24	29,7	713	24	39,7	952	24	46,9	1127	24	56,1	1347	24	67,1	1610
23	13,5	310	23	17,3	398	23	20,7	477	23	25,6	590	23	30,3	698	23	40,5	932	23	48,0	1103	23	57,3	1318	23	68,5	1576
22	13,8	303	22	17,7	389	22	21,2	466	22	26,2	577	22	31,0	682	22	41,4	912	22	49,0	1079	22	58,6	1289	22	70,1	1541
21	14,1	296	21	18,1	380	21	21,7	456	21	26,8	563	21	31,7	667	21	42,4	891	21	50,2	1054	21	60,0	1260	21	71,7	1506
20	14,4	289	20	18,5	371	20	22,2	445	20	27,5	550	20	32,5	651	20	43,5	869	20	51,4	1029	20	61,5	1229	20	73,5	1469
19	14,8	281	19	19,0	361	19	22,8	433	19	28,2	536	19	33,4	634	19	44,6	847	19	52,8	1003	19	63,1	1198	19	75,4	1432
18	15,2	274	18	19,5	352	18	23,4	422	18	29,0	522	18	34,3	617	18	45,8	825	18	54,2	976	18	64,8	1166	18	77,4	1394
17	15,7	266	17	20,1	342	17	24,1	410	17	29,8	507	17	35,3	600	17	47,1	801	17	55,8	948	17	66,7	1133	17	79,7	1355
16	16,1	258	16	20,7	332	16	24,9	398	16	30,7	492	16	36,4	582	16	48,6	778	16	57,5	920	16	68,7	1100	16	82,1	1314
15	16,7	250	15	21,4	321	15	25,7	385	15	31,7	476	15	37,6	563	15	50,2	753	15	59,4	891	15	71,0	1065	15	84,8	1273
14	17,2	241	14	22,2	310	14	26,6	372	14	32,9	460	14	38,9	544	14	52,0	727	14	61,5	861	14	73,5	1029	14	87,8	1229
13	17,9	233	13	23,0	299	13	27,6	359	13	34,1	443	13	40,3	524	13	53,9	701	13	63,8	829	13	76,2	991	13	91,1	1185
12	18,6	224	12	23,9	287	12	28,7	344	12	35,5	426	12	42,0	504	12	56,1	673	12	66,4	797	12	79,4	952	12	94,9	1138
11	19,5	214	11	25,0	275	11	30,0	330	11	37,1	408	11	43,9	482	11	58,6	645	11	69,3	763	11	82,9	912 869	11	99,1	1090
10	20,4	204 194	10 9	26,2	262	10	31,4	314 298	9	38,9	389 369	10	46,0 48,5	460 436	9	61,5	615 583	9	72,7	727 690	9	86,9 91,6	825	9	103,9	1039 986
8	'		8	27,6	249	8	33,1	298	8	41,0 43,5	348	8	,	411	8	64,8 68,7	550	8	76,7	651	8	91,6	778	8	109,5	929
7	22,8	183 171	7	29,3 31,3	219	7	35,2 37,6	263	7	46,5	325	7	51,4 55,0	385	7	73,5	514	7	81,3 86,9	609	7	103,9	727	7	116,2 124,2	869
6	26,3	158	6	33,8	203	6	40.6	244	6	50,2	301	6	59,4	356	6	79,4	476	6	93,9	563	6	112,2	673	6	134,1	805
5	28,9	144	5	37,1	185	5	44,5	222	5	55.0	275	5	65,1	325	5	86.9	435	5	102.9	514	5	122,9	615	5	146,9	735

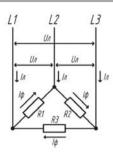

															i											
OM	ı/м 0,	39	Oı	м/м 0	,3	Ом	ı/м 0,	25	Or	и/м 0,	,2	OM	ı/м 0 ,	13	Ом	ı/м 0 ,	09	Ом	/м 0,	07	Ом	/м 0,	05	Oı	и/м 0,	02
Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт
30	67,2	2017	30	76,7	2300	30	84,0	2520	30	93,9	2817	30	116,5	3494	30	140	4199	30	158,7	4761	30	187,8	5634	х	х	х
29	68,4	1983	29	78,0	2261	29	85,4	2477	29	95,5	2770	29	118,5	3435	29	142,4	4129	29	161,4	4681	29	191,0	5539	х	Х	Х
28	69,6	1949	28	79,4	2222	28	86,9	2434	28	97,2	2721	28	120,6	3375	28	145,0	4060	28	164,3	4600	28	194,4	5443	Х	Х	Х
27	70,9	1914	27	80,8	2182	27	88,5	2390	27	99,0	2672	27	122,8	3315	27	147,5	3984	27	167,3	4517	27	198,0	5345	х	Х	Х
26	72,2	1878	26	82,4	2141	26	90,2	2346	26	100,9	2622	26	125,1	3253	26	150,4	3909	26	170,5	4433	26	201,7	5245	Х	Х	Х
25	73,7	1841	25	84,0	2100	25	92	2300	25	103	2571	25	127,6	3190	25	153,3	3833	25	173,9	4347	25	205,7	5143	Х	Х	Х
24			24	85,7	2057	24	93,9	2254	24	105,0	2520	24	130,2	3125	24	156,5	3756	24	177,4	4259	24	210,0	5039	Х	Х	Х
23		1766	23	87,6	2014	23	95,9	2206	23	107,2	2466	23	133,0	3059	23	159,9	3677	23	181,3			214,5	4933	Х	Х	Х
22		1727	22	89,5	1970	22	98,1	2158	22	109,6	2412	22	136,0	2992	22	163,5	3596	22	185,3			219,3	4825	Х	Х	Х
21		1688	21	91,6	1924		100,4		21	112,2	2357	21	139,2	2923	21	167,3	3513	21	189,7	3984		224,5	4714	X	Х	Х
20		1647	20	93,9	1878	20	102,9		20	115	2300	20	142,6	2853	20	171,4	3429	20	194,4	3888	20	230	4600	X	Х	Х
19		1605	19	96,3	1830		105,5		19	118,0	2242	19	146,3	2781	19	175,9	3342	19	199,4	3789	19	236,0	4484	X	X	X
18		1563	18	99,0	1782 1731	18	108,4 111.6		18	121,2	2182	18	150,4	2706	18	180,7 185.9	3253	18	204,9	3688 3584	18	242,4 249,5	4364	X	X	X
17 16	/-	1519 1473	17 16	101,8	1680	17 16	115,0		17 16	124,7 128,6	2057		154,7 159,5		17 16	191,7	3161 3067	17	210,8 217,3	3477	17	257,1	4241 4114	X	X	X
15		1426		103,0	1626	-	118,8		15	132,8	1992	16 15	164,7	2552 2471	15	191,7	2969	15	224,5	3367	15	265,6	3984	X	X	X
14		1378		112,2	1571	14	122,9		14	137,5	44	14	170,5	2387	14	204,9	2869	14	232,3	3253	-	274,9	3849	X	X	X
13	102,1			116,5		13	127,6		13	142,6	1854	13	176,9	2300	13	212,6	2764	13	241,1	3134	13	285,3	3709	X	X	X
12	106,3			121,2	1455	12	132,8		12	148,5	1782	12	184,1	2210	12	221,3	2656	12	251,0	3011	12	296,9	3563	12	469,5	5634
11	111,0	-		126,6		11	138,7		11	155,1	1706	11	192,3	2116	11	231,2	2543	11	262,1	2883	11	310,1		11	490,4	5394
	116,5		10	132,8	1328		145,5		10	162,6	1626	10	201,7	2017	10	242,4	2424	10	274,9	2749	10	325,3	3253	10	514,3	5143
9	122,8		9	140,0	1260	9	153,3		9	171,4	1543	9	212,6	1914	9	255,6	2300	9	289,8	2608	9	342,9	3086	9	542,1	4879
8	130,2	1042	8	148,5	1188	8	162,6	1301	8	181,8	1455	8	225,5	1804	8	271,1	2168	8	307,4	2459	8	363,7	2909	8	575,0	4600
7	139,2	974	7	158,7	1111	7	173,9	1217	7	194,4	1361	7	241,1	1688	7	289,8	2028	7	328,6	2300	7	388,8	2721	7	614,7	4303
6	150,4	902	6	171,4	1029	6	187,8	1127	6	210,0	1260	6	260,4	1563	6	313,0	1878	6	354,9	2129	6	419,9	2520	6	664,0	3984
5	164,7	824	5	187,8	939	5	205,7	1029	5	230,0	1150	5	285,3	1426	5	342,9	1714	5	388,8	1944	5	460,0	2300	5	727,3	3637

Таблица выбора кабеля TXLP DRUM (400 B)

OM	ı/м 12	.,7	Oı	м/м 7	,7	Ом	/м 5,	35	Or	и/м 3	,5	Or	и/м 2	,5	01	и/м 1,	.4	Ом	ı/м 1 ,	0	40	и/м 0,	7	Oı	и/м 0,	49
Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт	Вт/м	М	Вт
30	20,5	615	30	26,3	790	30	31,6	947,2	30	39,0	1171	30	46,2	1386	30	61,7	1852	30	73,0	2191	30	87,3	2619	30	104,3	3130
29	20,8	604	29	26,8	776	29	32,1	931,3	29	39,7	1151	29	47,0	1362	29	62,8	1821	29	74,3	2154	29	88,8	2575	29	106,1	3077
28	21,2	594	28	27,2	763	28	32,7	915,1	28	40,4	1131	28	47,8	1339	28	63,9	1789	28	75,6	2117	28	90,4	2530	28	108,0	3024
27	21,6	583	27	27,7	749	27	33,3	898,6	27	41,1	1111	27	48,7	1315	27	65,1	1757	27	77,0	2078	27	92,0	2484	27	110,0	2969
26	22,0	572	26	28,3	735	26	33,9	881,8	26	41,9	1090	26	49,6	1290	26	66,3	1724	26	78,4	2040	26	93,8	2438	26	112,1	2914
25	22,4	561	25	28,8	721	25	34,6	864,7	25	42,8	1069	25	50,6	1265	25	67,6	1690	25	80	2000	25	95,6	2390	25	114,3	2857
24	22,9	550	24	29,4	706	24	35,3	847,2	24	43,6	1047	24	51,6	1239	24	69,0	1656	24	81,6	1960	24	97,6	2342	24	116,6	2799
23	23,4	538	23	30,1	691	23	36,1	829,4	23	44,6	1025	23	52,8	1213	23	70,5	1621	23	83,4	1918	23	99,7	2293	23	119,2	2740
22	23,9	526	22	30,7	676	22	36,9	811,1	22	45,6	1003	22	53,9	1187	22	72,1	1586	22	85,3	1876	22	101,9	2242	22	121,8	2680
21	24,5	514	21	31,5	661	21	37,7	792,5	21	46,7	980	21	55,2	1159	21	73,8	1549	21	87,3	1833				21	124,7	2619
20	25,1	502		32,23	645	20	38,7	773,4	20	47,8	956	20	56,6	1131	20	75,6	1512	20	89,4	1789				20	127,8	2556
19	25,8	489	19	33,1	628	19	39,7	753,8	19	49,1	932	19	58,0	1103	19	77,6	1474	19	91,8	1744		109,7	2084	19	131,1	2491
18	26,5	476	18	34,0	612	18	40,8	733,7	18	50,4	907	18	59,6	1073	18	79,7	1434	18	94,3	1697		112,7	2028	18	134,7	2424
17	27,2	463	17	35,0	594	17	41,9	713,0	17	51,9	882	17	61,4	1043	17	82,0	1394	17	97,0	1649		116,0		17	138,6	2356
16	28,1	449	16	36,0	577	16	43,2	691,7	16	53,5	855	16	63,2	1012	16	84,5	1352	16	100,0	1600		119,5		16	142,9	2286
15 14	29,0 30,0	435 420	15 14	37,2 38,5	558 539	15	44,7 46,2	669,8 647,1	15 14	55,2 57,1	828 800	15 14	65,3	980 947	15 14	87,3 90,4	1309 1265		103,3 106,9	1549 1497	15 14	123,4 127,8	1852 1789	15	147,5 152,7	2213
13	31,1	405	13	40,0	520	14	48,0	623,5	13	59,3	771	13	67,6 70,2	912	13	93,8	1219		110,9	1442		132,6	1724	13	158,5	2060
12	32,4	389	12	41,6	499	12	49,9	599,1	12	61,7	741	12	73,0	876	12	97,6	1171		115,5	1386		138,0	1656	12	165,0	1979
11	33,8	372	11	43,5	478	11	52,1	573,6	11	64,5	709	11	76,3	839	11	101.9	1121		120,6	1327		144,1	1586	11	172,3	1895
10	35,5	355	10	45,6	456	10	54,7	546,9	10	67,6	676	10	80,0	800	10	106,9	1069	10	126,5	1265		151,2		10	180,7	1807
9	37,4	337	9	48,0	432	9	57.6	518,8	9	71,3	641	9	84,3	759	9	112,7	1014		133,3			159,4	1434	9	190,5	1714
8	39,7	317	8	51,0	408	8	61,1	489,1	8	75,6	605	8	89,4	716	8	119,5	956		141,4	1131	8	169,0	1352	8	202,0	1616
7	42,4	297	7	54,5	381	7	65,4	457,5	7	80,8	566	7	95,6	669	7	127,8	894		151,2	1058	7	180,7	1265	7	216,0	1512
6	45,8	275	6	58,8	353	6	70,6	423,6	6	87,3	524	6	103,3	620	6	138,0	828	6	163,3	980		195,2		6	233,3	1400
5	50,2	251	5	64,5	322	5	77,3	386,7	5	95,6	478	5	113,1	566	5	151,2	756	5	178,9	894	5	213,8	1069	5	255,6	1278

Ом	/м 0,3	39	0	м/м 0	,3	Ом	ı/м 0,	25	Oı	и/м 0	,2	OM	1/м 0,	13	Ом	/м 0,	09	QN	1/м 0,	07	Ом	/м 0,0	05	Qı	и/м 0,	.02
Вт/м	M	Вт	Вт/м	, -	Вт	Вт/м	М	Вт	Вт/м	M	Вт	Вт/м		Вт	Вт/м		Вт	Вт/м		Вт	Вт/м	M		Вт/м		Вт
30	116,9	3508	30	133,3	4000	30	146,1	4382	30	163.3	4899	30	202,5	6076	30	243,4	7303	30	276	8281	30	326,6	9798	X	х	х
29	118,9		29	135,6		29			29	166,1		29	206	5974	29		7180	29	280,7	8142	29	332,2		х	х	х
28	121	3389	28	138	3864	28	151,2	4233	28	169	4733	28	209,7	5870	28	252	7055	28	285,7	8000	28	338,1	9466	х	х	х
27	123,3	3328	27	140,5	3795	27	154	4157	27	172,1	4648	27	213,5	5765	27	256,6	6928	27	291	7856	27	344,3	9295	х	х	х
26	125,6	3266	26	143,2	3724	26	156,9	4079	26	175,4	4561	26	217,6	5657	26	261,5	6799	26	296,5	7709	26	350,8	9121	х	х	х
25	128,1	3203	25	146,1	3651	25	160	4000	25	178,9	4472	25	221,9	5547	25	266,6	6667	25	302,4	7559	25	357,8	8944	х	х	х
24	130,7	3138	24	149,1	3578	24	163,3	3919	24	182,6	4382	24	226,5	5435	24	272,2	6532	24	308,6	7407	24	365,1	8764	х	х	х
23	133,6	3072	23	152,3	3502	23	166,8	3837	23	186,5	4290	23	231,3	5320	23	278	6394	23	315,2	7251	23	373	8579	х	х	х
22	136,6	3004	22	155,7	3425	22	170,6	3752	22	190,7	4195	22	236,5	5204	22	284,3	6254	22	322,3	7091	22	381,4	8390	х	х	х
21	139,8	2935	21	159,4	3347	21	174,6	3666	21	195,2	4099	21	242,1	5084	21	291	6110	21	329,9	6928	21	390,4	8198	х	Х	х
20	143,22	2864	20	163,3	3266	20	178,9	3578	20	200	4000	20	248,1	4961	20	298,1	5963	20	338,1	6761	20	400	8000	х	Х	х
19	146,9	2792	19	167,5	3183	19	183,5	3487	19	205,2	3899	19	254,5	4836	19	305,9	5812	19	346,8	6590	19	410,4	7797	х	х	х
18	151	2717	18	172,1	3098	18	188,6	3394	18	210,8	3795	18	261,5	4707	18	314,3	5657	18	356,3	6414	18	421,6	7589	х	х	х
17	155,3	2641	17	177,1	3011	17	194	3298	17	216,9	3688	17	269,1	4574	17	323,4	5497	17	366,7	6234	17	433,9	7376	х	х	х
16	160,1	2562	16	182,6	2921	16	200	3200	16	223,6	3578	16	277,4	4438	16	333,3	5333	16	378	6047	16	447,2	7155	х	х	х
15	165,4	2481	15	188,6	2828	15	206,	3098	15	230,9	3464	15	286,4	4297	15	344,3	5164	15	390,4	5855	15	461,9	6928	х	Х	х
14	171,2	2397	14	195,2	2733	14	213,8	2993	14	239	3347	14	296,5	4151	14	356,3	4989	14	404,1	5657	14	478,1	6693	х	х	х
13	177,6	2309	13	202,5	2633	13	221,9	2884	13	248,1	3225	13	307,7	4000	13	369,8	4807	13	419,3	5451	13	496,1	6450	х	Х	х
12	184,9	2219	12	210,8	2530	12	230,9	2771	12	258,2	3098	12	320,3	3843	12	384,9	4619	12	436,4	5237	12	516,4	6197	12	816,5	9798
11	193,1	2124	11	220,2	2422	11	241,2	2653	11	269,7	2966	11	334,5	3679	11	402	4422	11	455,8	5014	11	539,4	5933	11	852,8	9381
10	202,5	2025	10	230,9	2309	10	253	2530	10	282,8	2828	10	350,8	3508	10	421,6	4216	10	478,1	4781	10	565,7	5657	10	894,4	8944
9	213,5	1922	9	243,4	2191	9	266,7	2400	9	298,1	2683	9	369,8	3328	9	444,4	4000	9	504	4536	9	596,3	5367	9	942,8	8485
8	226,5	1812	8	258,2	2066	8	282,8	2263	8	316,2	2530	8	392,2	3138	8	471,4	3771	8	534,5	4276	8	632,5	5060	8	1000	8000
7	242,1	1695	7	276	1932	7	302,4	2117	7	338,1	2366	7	419,3	2935	7	504	3528	7	571,4	4000	7	676,1	4733	7	1069	7483
6	261,5	1569	6	298,1	1789	6	326,6	1960	6	365,1	2191	6	452,9	2717	6	544,3	3266	6	617,2	3703	6	730,3	4382	6	1154,7	6928
5	286,4	1432	5	326,6	1633	5	357,8	1789	5	400	2000	5	496,1	2481	5	596,3	2981	5	676,1	3381	5	800	4000	5	1264,9	6325

Пример 1. Схема подключения "Треугольник"

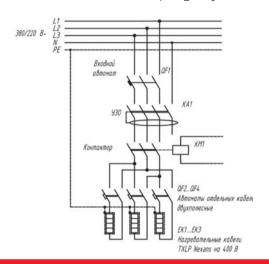
 $I_{\Pi} = \sqrt{3} \cdot I_{cb}$ $U_{\Pi} = U_{cb} = 380B$ $P_{cb} = U_{cb} \cdot I_{cb} \cdot \cos \varphi$ $\sum P = \sqrt{3} \cdot U_{\Pi} \cdot I_{\Pi} \cdot \cos \varphi =$ $= 3 \cdot U_{cb} \cdot I_{cb} \cdot \cos \varphi$

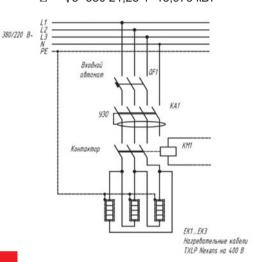
Нагревательный кабель: активная нагрузка, $\cos \varphi$ =1 Симметричная нагрузка: $R_1 = R_2 = R_3$

Пример.

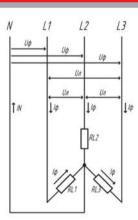
Три кабеля *TXLP* - 200 (380 B) 155 м, 31.0 Ом. 4658 Вт при 380 В.

Линия питания 380/220В~


Расчетный ток каждого кабеля:


$$I_{\Phi} = \frac{U}{R} = \frac{380}{31,0} = 12,26 A$$

Расчетный ток каждого кабеля:


$$U_{\rm n} = U_{\rm ch} = 380 \, \rm B$$

 $I_{\Pi} = \sqrt{3} \cdot I_{cb} = \sqrt{3} \cdot 12,26 = 12,26 = 21,23 \text{A (QF1, KA1, KM1)}$ $\Sigma P = \sqrt{3} \cdot 380 \cdot 21.23 \cdot 1 = 13.973 \text{ KBT}$

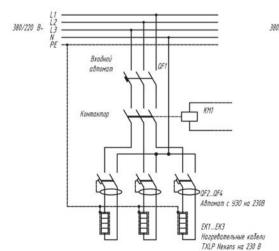
Пример 2. Схема подключения "Звезда"

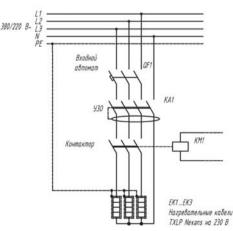
$$I_{\Pi} = I_{\Phi}$$
 $U_{\Phi} = 220$ В
 $U_{\Pi} = \sqrt{3} \cdot U_{\Phi} = 380$ В
 $P_{\Phi} = U_{\Phi} \cdot I_{\Phi} \cdot \cos \varphi$

$$\sum P = 3 \cdot U_{\Phi} \cdot I_{\Phi} \cdot \cos \varphi = \sqrt{3} \cdot U_{\Pi} \cdot I_{\Pi} \cdot \cos \varphi$$
Нагревательный кабель

Нагревательный кабель: активная нагрузка, $\cos \varphi$ =1 Симметричная нагрузка:

$$R_{L1} = R_{L2} = R_{L3}, I_N = 0$$

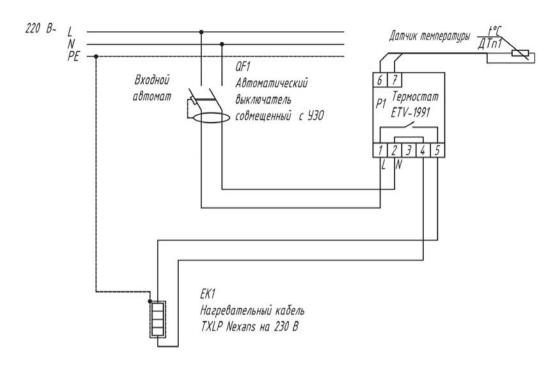

. Три кабеля *TXLP*/1-3100/17 (230 В) 185 м, 17,1 Ом, 2836 Вт при 220 В.

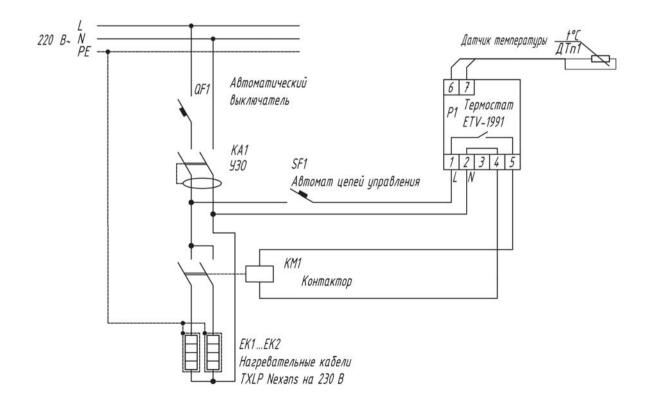

Линия питания 380/220В~

Расчетный ток каждого кабеля и линии питания:

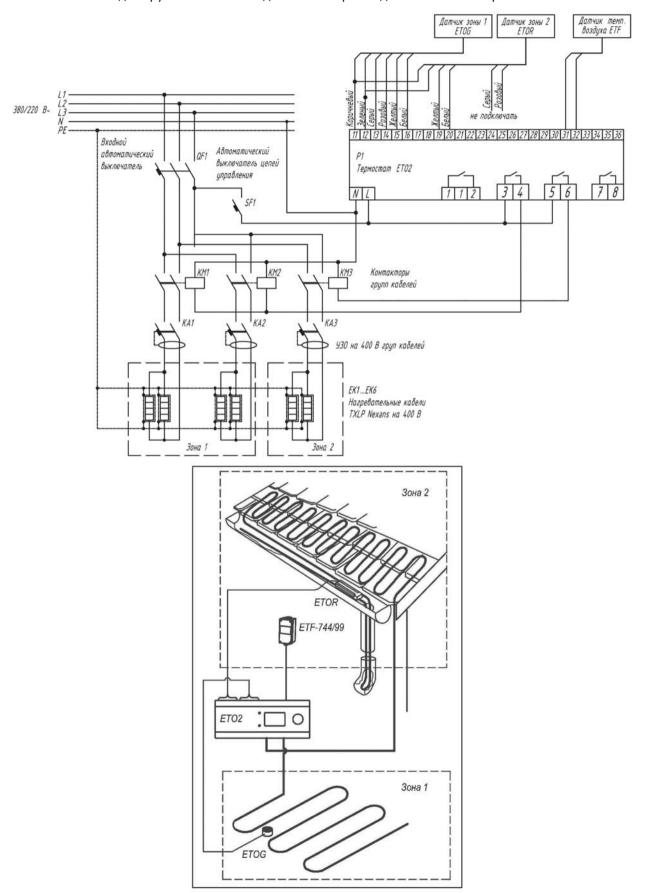
$$I_{\Pi} = I_{\Phi} = \frac{U_{\Phi}}{R} = \frac{380}{17.1} = 12,85 \text{ A. } (QF1, KA1, KM1)$$

 $\Sigma P = 3.22012.8511 = 8.481 \text{ kBT.}$

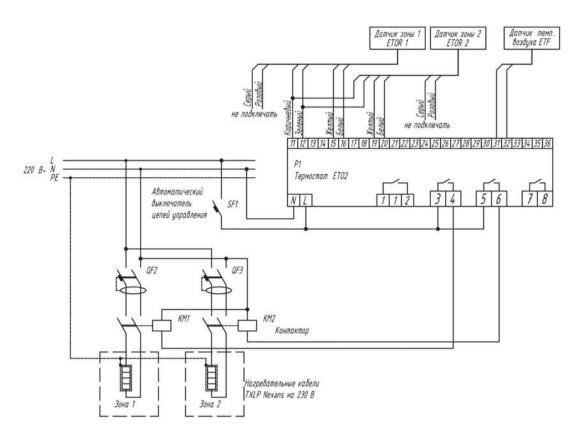

$$\Sigma P = 3 \cdot 220 \cdot 12,85 \cdot 1 = 8,481$$
 кВт

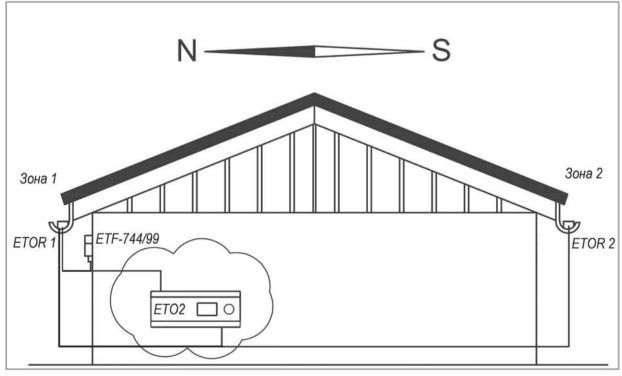

Пример 3. Подключение кабелей на 230 В к регулятору

ETV-1991 с датчиком температуры, макс. ток 16A. Защитный автомат, совмещенный с УЗО на 230 В для всей схемы

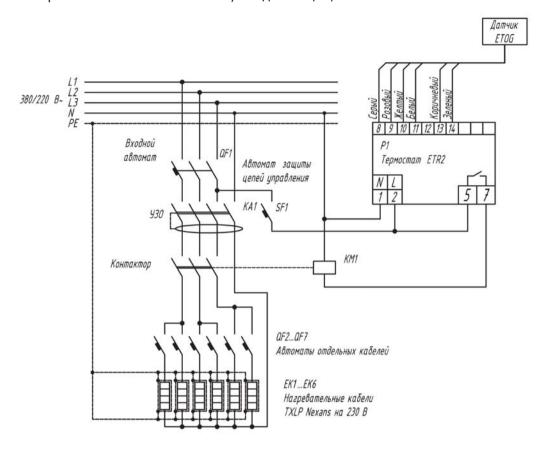

Пример 4. Подключение кабелей с током больше 16 А через контактор

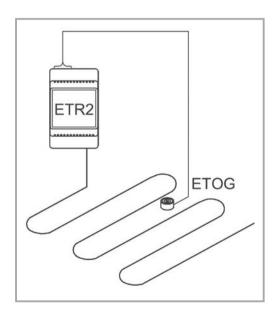
Регулятор ETV-1991 с датчиком температуры, макс. ток 16A. Защитный автомат и УЗО на 230 В для всей схемы.


Пример 5. Термостат ETO2, две системы - 1 и 2, два датчика влажности/температуры ETOG и ETOR в любой комбинации

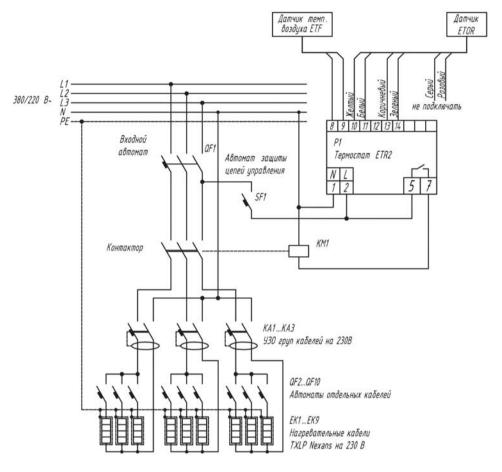

Раздельные УЗО на 400 В в цепях питания груп нагревательных кабелей на 400 В, каждая группа кабелей подключена через отдельный контактор.

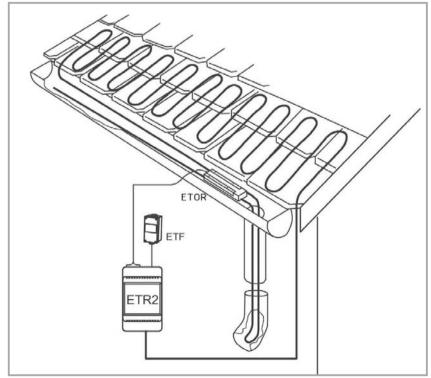
Пример 6. Термостат ETO2, две системы - 1 и 2, два датчика влажности ETOR


УЗО на 230 В совмещенные с автоматом, раздельно для каждой системы. Нагревательные кабели на 230 В.



Пример 7. Термостат ETR2, с датчиком влажности/температуры грунта


Одно общее четырех полюсное УЗО в цепи питания нагревательных кабелей. Нагревательные кабели на 230 В, каждый защищен своим автоматом.



Пример 8. Термостат ETR2, с двумя датчиками, влажности на кровле и температуры воздуха

Раздельные УЗО на 230 В в цепях питания групп нагревательных кабелей. Нагревательные кабели на 230 В, каждый защищен своим автоматом.

Для записей:

Nexans Norway AS является ведущим производителем различных видов силового, телекоммукационного и нагревательного кабелей в Норвегии, а также одним из мировых лидеров по производству контрольных кабелей для морских платформ и высоковольтных подводных кабелей. Главный офис Nexans Norway AS располагается в г. Осло, а заводы - в городах Ронан, Намсус, Лангус, Кармей и Халден. В Nexans Norway AS имеется три подразделения: подразделение кабелей широкого применения (Market Line), подразделения подводного гибридного кабеля (Hybrid Underwater cable), и подводного высоковольтного кабеля (Submarine High Voltage). Численность персонала компании Nexans Norway AS составляет 1500 сотрудников.

Новый завод по производству нагревательных кабелей Nexans Norway AS находится в городе Лангус, расположенном в 20 километрах к югу от столицы Норвегии города Осло. С момента открытия в 1992 году завод производит нагревательный кабель, а также силовой кабель для внутренней прокладки, как для рынка самой Норвегии, так и для более чем 30-ти зарубежных стран. Склад готовой продукции завода в Лангусе служит также логистическим центром для всех предприятий Nexans, расположенных в Норвегии.

Спасибо за доверие!

ООО «Разумный Дом»

Украина, 04073, г. Киев, ул. Сырецкая, 31

e-mail: info@rozumdim.com.ua

тел.: (044) 503-06-06 тел.: (044) 501-40-40

моб.: (067) 500-93-65

