

ТЕПЛОВЫЕ НАСОСЫ ВОЗДУХ-ВОДА

Почему Kita

В течение многих лет мы получили большой опыт работы с тепловыми насосами для жилой недвижимости. Это очень перспективное направление, потребность в данном оборудование растет, одновременно к нему выдвигаются более высокие требования. Конечный пользователь нуждается в тепловом насосе с низким потреблением электроэнергии, тихой и надежной работой в холодном и влажном климате. К тому же, должна быть гарантирована экономия денег.

Будущее сейчас

Kita компактный тепловой насос воздух-вода нового поколения с высокой эффективностью работы

Кita обеспечивает отопление, охлаждение и горячую воду для бытовых нужд без необходимости в установке бойлера или электрического котла.

Новые конструктивные разработки делают КІТА более конкурентоспособными на рынке по сравнению с другими производителями

КІТА итальянец, как и его место производства.

Природная экономия

Инновации

В тепловых насосах Кіта впервые реализована технология "умного впрыска" с инверторным BLDC scroll-компрессором и двумя электронными расширительными клапанами, что дает возможность работать при наружной температуре воздуха -33°C.

Тишина

Для комфорта в жилых помещения в Kita установлены низкоскростные вентиляторы класса A, с акустической изоляцией и резиновой подвеской.

Сезонная оптимизация

Полностью инверторный Kita автоматически приспосабливается к работе, согласно входящим параметрам, в соответствии с сезоном, что позволяет получить на больше 30% экономии в сравнении с обычными технологтями

Эффективность (патент)

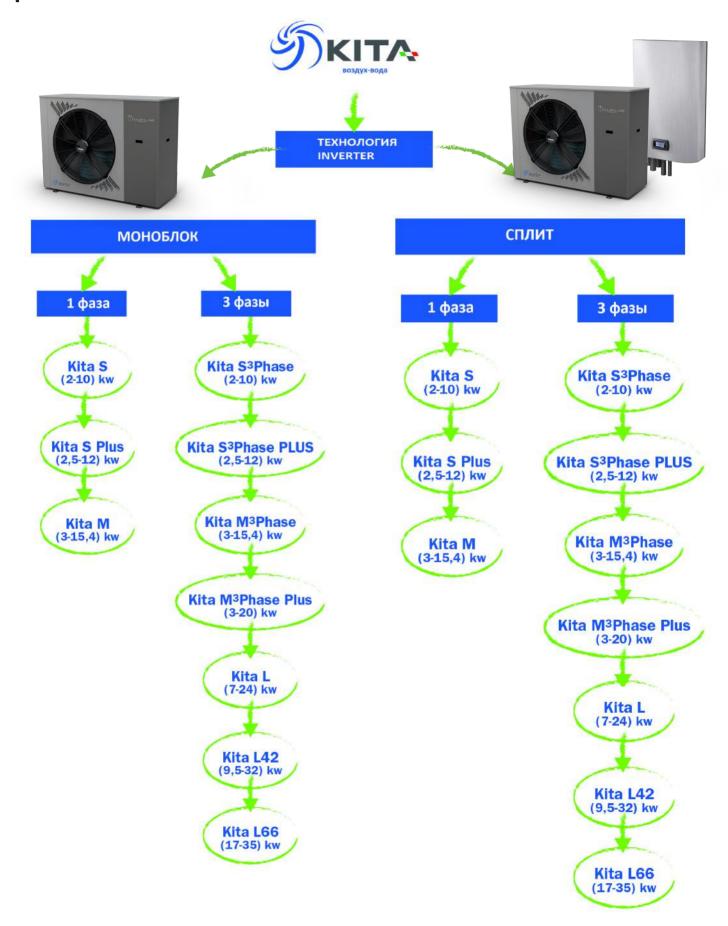
Высокое качество и улучшенные комплектующие, оттайка оптимизировнна и происходит только в необходимый момент, по запатентованному методу.

Полный контроль

Для полного контроля над блоком и управления внешними компонентами, используется программируемый контроллер.

Надежность

Надежную и бесперебойную работу устройства обеспечивают модулятор мощности, устройства защиты, качественные компоненты и программное обеспечение



Экологичность

В тепловых насосах Кita используется озонобезопасный фреон R410A. Устройство разработано для максимальной эффективности использования энергии, сбережения природных ресурсов и очень низким воздействием на окружающую среду.

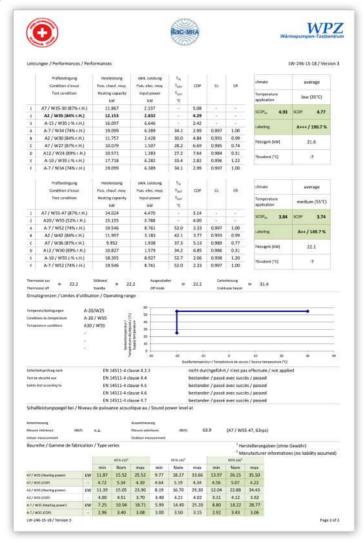
KITA ассортимент

Мощность тепловых насосов КІТА в зависимости от фазности

Сертификат ЕНРА

EHPA (European Heat Pump Association) Европейская Ассоциация Тепловых Насосов

Это центральная европейская организация, объединяющая национальные ассоциации тепловых насосов.


Сертификат ЕНРА гарантирует высокое качество тепловых насосов; существуют установленные нормативы и стандарты, обеспечивающие высокую энергоэффективность и безопасную работу тепловых насосов. Для получения Европейского знака качества, оборудование должно быть сертифицировано независимым институтом аккредитованы по стандартам EN ISO 17025, путем применения стандартов EN14511: 2013 и EN 14825: 2013.

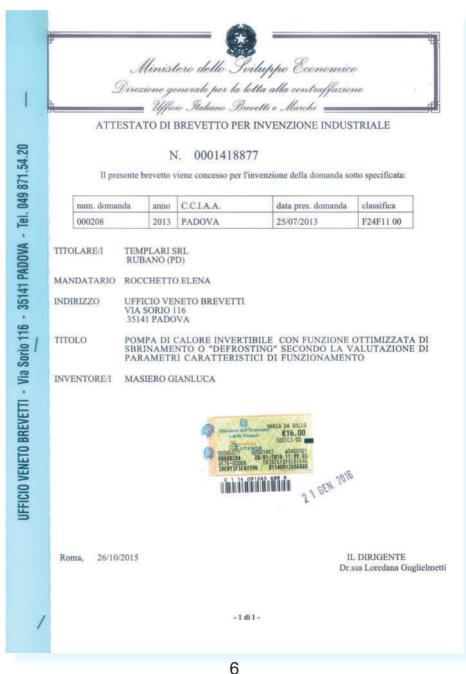
КІТА получил сертификат ЕНРА, действующий в 12 странах. Сертификация проводилась в центре WPZ, в Buchs, Switzerland. Результаты тестов приведены ниже в сканкопии оригинала сертификата. Данные результаты представляют собой мировой рекорд для инверторных тепловых насосов: COPA2/W35=4,29(!!) и SCOP=4,93(!!)

Пояснение: СОР коэффициент производительности, а также энергоэффективности теплового насоса;

A2 / W35 показатели при наружной температуре воздуха 2 $^{\circ}$ С и воды 35 $^{\circ}$ С;

SCOP -сезонный коэффициент производительности и представляет собой значение, рассчитанное с помощью измерения нескольких пар температур A / W.

Тепловые насосы КІТА для отопления, кондиционирования и нагрева горячей воды продемонстрировали на испытательном стенде, что при такой высокой производительности и минимальных эксплуатационных расходах, могут даже конкурировать с геотермальными тепловыми насосами. Значение СОР 190.7% относит Кіта в класс энергоэффективности А +++. Это самый высокий класс энергоэффективности, который показывает большую экономию средств и ресурсов, а также бережное отношение к окружающей среде. Значение SCOP 4.93, говорит о том, что тепловой насос КІТА позволяет создать макисимально комфортные условия в помещении с минимальными эксплуатационными расходами.


Интелектуальная оттайка и and reduced

Патент на промышленное изобретение №0001418877

Управление оттайкой Templari, в отличие от самого распространенного процесса, заключающегося в контроле через фиксированное время температуры, имеет несколько преимуществ: определение наружной температуры воздуха и дополнительные точки измерения позволяют модулировать процесс оттайки в самообучении управление исключительно на основе фактического присутствия льда на испарителе; Таким образом цикл оттайки имеет место только тогда, когда холодильный цикл теплового насоса, не имеет смысла с энергетической точки зрения.

Данное управление дает следующие преимущества:

- Лучшее значение COP и SCOP
- Меньший износ компрессора
- Больший комфорт с большой мощностью нагрева
- Более длительный срок службы компрессора; Отсутствие хладагента в компрессоре; Несколько остановок; Компрессор также включается во время оттайки.
- Небольшое звуковое давление за счет более низкого включения четырехходового клапана

Сертификат периодичности циклов оттайки

Prüfbedingung Test condition A2 / W35	Prüfnummer Test number		LW-246-15-18	
Messgrössen	Einheit	Mittelwert	Abweichung absolute	(deviation) relative
Measured variables	Unit	11067	ausorute	TOMOTO
1 Heizleistung Zyklus 1 (heating capacity cycle 1)	w			
Abtaudauer (period of defrosting)	min	15.7		
Heizdauer (period of heating)	min	353.8		
Relative Abtaudauer (relative duration of defrosting period)	%	4.2		
2 Heizleistung Zyklus 2 (heating capacity cycle 2)	w	11150	83	0.75%
Abtaudauer (period of defrosting)	min	15.5		
Heizdauer (period of heating)	min	375.0		
Relative Abtaudauer (relative duration of defrosting period)	%	4.0		
3 Heizleistung Zyklus 3 (heating capacity cycle 3)	w	11172	22	0.20%
Abtaudauer (period of defrosting)	min	15.5		
Heizdauer (period of heating)	min	377.3		
Relative Abtaudauer (relative duration of defrosting period)	%	3.9		
M 11160 (S) 11140 (S) 11100 (S) 11080 (S) 11080			Zyklus 3 (cycle	33)
11020 11000 Zyklus 1 (cycle 1)	Zyklus 2 (cycle 2)		1 220	
11020	Zyklus 2 (cycle 2)	19:12:40	1 33383	
11020		19:12:40 15:52:26	11.12.2015	2015-12-11
11020 2yklus 1 (cycle 1) 5 Prüfdauer (test duration)	hh:mm:ss			2015-12-11

Тестирование WPZ тепловых насосов KITA на оттайку показали, что тепловые насосы имеют повышенную эффективность циклов.

В частности, испытание, проведенное в наиболее благоприятных условиях для образования наледи (воздух 2 °С, относительная влажность 87%), определяет интервал времени между циклами оттайки более 6 часов.

Поэтому затраты энергии на оттайку составляют только 4% от фактической работы, а затем в течение 96% времени тепловой насос производит энергию почти в два раза выше текущего стандарта.

2х ступенчатые роторный компрессор для абсолютной тишины

Двухступенчатый роторный компрессор имеет две камеры сжатия и два вращающихся элемента, которые производят сжатие хладогена симетрично.

Надежность сохраняется и при неблагоприятных условиях работы. Двухступенчатый роторный компрессор имеет на 75% меньше вибраций, чем обычный одноступенчатый, поэтому уровень шума очень низкий, а производительность компрессора высокая и при низкой скорости. В жилых помещениях этот факт очень важен, т.к. тепловая нагрузка вынуждает тепловой насос работать не на полную мощность.

Производительность и затраты энергии зависят от скорости компрессора

Очень часто необходимо повысить мощность для большей эффективности. Также, когда аккумулятор содержит небольшое количество воды, необходимо использовать инверторный блок, такой как Kita. В Kita установлен инвертор, устройство, которое изменяет параметр питания компрессора, изменяя напряжение и частоту. Это действие позволяет компрессору изменять свою скорость, что приводит к изменению расхода хладагента, мощности и затрат энергии. Таким образом, в каждый момент Kita соответствует тепловой нагрузке.

"Smart Injection" спиральный инверторный компрессор, обеспечивающий работу до наружной температуры -33°C

По мере того, как снижается внешняя температура, мощность тепловых насосов уменьшается, а тепловая нагрузка возратает.

В Templari Kita, используются новые революционные технологии, позволяющие тепловым насосам работать лучше, чем традиционные тепловые насосы воздух-вода. Эта специальная технология применяется в трехфазных установках с тепловой мощностью от 5 до 35 кВт.

В обычных тепловых насосах, когда температура наружного воздуха очень низкая, испаритель необходимо довести до температуры ниже, чем воздух, чтобы он мог поглощать тепло. Это приводит к уменьшению давления всасывания компрессора и уменьшению расхода хладагента, а значит и теплопроизводительности.

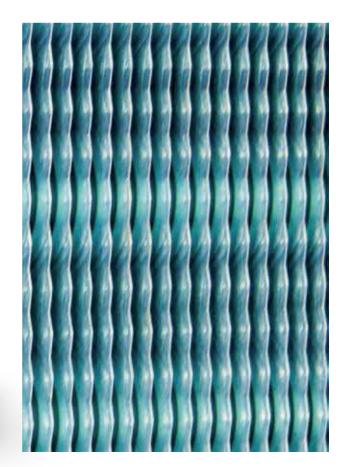
Чтобы исправить это, в инверторных системах частота компрессора увеличивается, но ограниченно, чтобы предотвратить нагревание и потерю надежности. Тепловые насосы Kita при снижении температуры наружного воздуха поддерживают стабильный

расход хладагента благодаря специальной системе Smart Injection, которая нейтрализует снижение теплопроизводительности.

Впрыск пара может также охлаждать компрессор, и это улучшает его рабочие характеристики, и может расширить его рабочий диапазон, а также компрессор достигает более высоких скоростей. Кроме того, эта технология плюс инвертор BLDC гарантирует рабочий диапазон до температуры наружного воздуха -33 ° С с высокой энергоэффективностью и значительной экономией, а также сокращает время оттайки.

Меньше времени на оттайку, только если это необходимо и без включения / выключения компрессора.

Умная оттайка.


Во время зимнего сезона соляной раствор и лед прилегают на оребрение и змеевик теплообменника. Обледенение быстро увеличивается, теплообменник полностью покрывается льдом, а защита теплового насоса не останавливает его работу, это опасно и может привести к поломке компрессора, или снижению его производительности.

Снижение времени оттайки

КІТА разработан таким образом, чтобы минимизировать количество и продолжительность циклов оттайки. Цикл оттайки активируется только тогда, когда это действительно необходимо. Процесс разморозки работает в резервном цикле, и вентилятор в это время останавливается. В данном режиме наледь на теплообменнике быстрее нагревается. КІТА представляет собой хороший компромисс между затратами энергии на резервный цикл и снижением эффективности в связи с образованием льда на теплообменнике.

Когда необходима оттайка, процесс начинается без выключения и включения компрессора и снижения его износа, а также увеличивается скорость оттайки.

Увеличение эффективности, благодаря специальному покрытию и расстоянию между оребрением 2,5 мм

В КІТА снижено время оттайки, благодаря следующим разработкам:

- Большой размер внешнего теплообменника с расстоянием между оребрением 2,5 мм и покрытием, снижающим образование льда
- Толщина оребрения 1,4 мм для увеличения теплообмена
- Точная разработка термодинамической цепи, что обеспечивает правильное распределение хладагента вдоль теплообменника, используя всю доступную поверхность.
- Внутренне футерованные трубы для увеличения теплообмена
- Специальное покрытие теплообменника для быстрого удаления конденсата.

Все это создает барьер для образования льда, а также увеличивает производительность теплового насоса КІТА, по сравнению с другими тепловыми насосами.

КІТА тестировалась в течение многих часов в разных климатических условиях, для определения момента и состояния образования льда во всем рабочем диапазоне для полного контроля и управления данным процессом.

КІТА выполняет процесс оттайки только тогда, когда это необходимо: разработан собственный контроллер для управления процессом с высокой точностью.

Благодаря высокому качеству компонентов и модуляции

Надежность тепловых насосов-важный аспект обеспечения энергоэффективности, КІТА имеет все необходимые параметры для этого:

- Высококачественные компоненты, каждый из которых-лучшее из того, что есть на рынке.
- Full-LDC инвертор лучше всего может адаптироваться к нагрузке. Можно увеличивать и уменьшать нагрузку, избегая перерывов и неэффективности, характерных для систем On/Off.
- Надежность гарантируется также правильной взаимосвязью между внутренними объемами и заправкой хладагентом, а также точным регулированием, выполняемым электронным программным обеспечением.
- Вентилятор (класс A, соответсвует ErP2015) управляется через Modbus RS485, точная регулировка позволяет даже при низкой скорости снижать уровень шума и потребление электроэнергии. Кроме того, существуют четыре профиля скорости для управления шумом и затратами электроэнергии.
- Встроенный насос класса A (соответсвует ErP 2020) с очень низким потреблением электроэнергии и высоким EEI (индексом энергоэффективности).

Kita гарантия от наледи

КІТА обеспечивает работу до -33 ° C, благодаря его инновационным методам оттайки и конструкторским решениям теплообменника и его оребрения.

Таким образом, весь поверхность внешнего теплообменника свободна от льда и тепловой насос работает адекватно.

KITA

Основные функции:

- регулирование температуры в помещении и температуры ГВС
- график работы. Можно установить ежедневную рабочую программу, что позволяет оптимизировать затраты на потребляемую электроэнергию.
- мониторинг основных параметров

КІТА обеспечивает наилучший комфорт в каждом состоянии. Кроме того, благодаря интеллектуальному управлению приоритет отдается горячей воде как в зимнем, так и в летнем режиме.

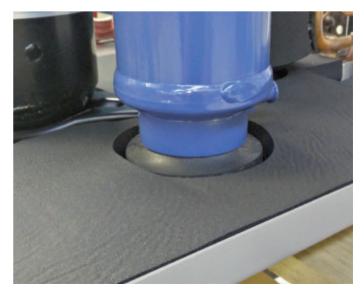
Управление функциями, с помощью контроллера

- Электронный программируемый контроллер с расширенными функциями и BMS-подключением.
- Защита от замерзания с использованием наружной и температуры выхода из теплового насоса, позволяет избежать повреждений гидравлической цепи.
- Комбинированные функции: зима + горячая вода, лето + горячая вода с приоритетом на горячую воду.
- Управление маслом с помощью контроллера для обеспечения возврата масла в компрессор.
- Климатические кривые. Это функция, которая адаптирует программу работы, в соответствии с заданными характеристиками здания и климатическими характеристиками; Данная функция направлена на энергосбережение и эффективность системы.
- Оптимизированная процедура оттайки, процесс разрешается только в том случае, если наружный теплообменник покрыт льдом.
- Четыре профиля уровня звука вентиляторов, которые можно настроить.
- Процедура нагрева для первого пуска (подогрев масла).
- Интегрированное управление бойлером (опция) функционирует как "интеграция" или "замена".
- Мониторинг входящих /исходящих параметров.
- Временное отключение для сервисного обслуживания.
- Возможность ограничить максимальную потребляемую мощность

KITA web

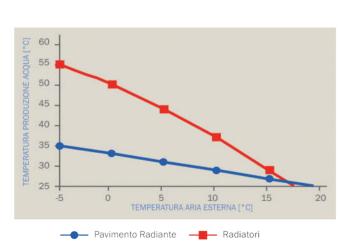
Новый сервис для дистанционного управления тепловыми насосами Kita. Инновационное программное обеспечением через веб-интерфейс, для удаленного управления и полного контроля над тепловым насосом. С KitaWeb любая информация о системе отопления / охлаждения доступна 24 часа.

Kita - это тепловой насос, который уделяет много внимания комфорту и предназначен для тишины


Источниками шума для теплового насоса являются: вентилятор, компрессор и шум из-за распространения вибрации.

Вентилятор: КІТА использует вентиляторы, произведенные лидером вентиляционного рынка. Вентилятор комплектуется собственным рассеивателем и сеткой, что позволяет снизить энергопотребление на 27% и уровень звука примерно на 7 дБ (A), по сравнению со стандартной версией без собственного рассеивателя и сетки.

Для борьбы с шумом весь термодинамический контур изолирован акустической изоляцией, в частности, компрессор имеет свою изолирующую оболочку, и все стенки, которые содержат контру, имеют соответствующую акустическую изоляцию. Кроме того, чтобы избежать шума, вызванного вибрацией, используются резиновые прокладки. Таким образом, вибрации приглушены и шум снижается.



Максимальный комфорт при минимальных энергозатратах

КИТА, запрограммирован так, что в зависимости от изменения погоды, автоматически выполняет изменение заданного значения, для обеспечения комфорта внутри помещения. Инверторная система помогает работать в этом типе функционирования. Таким образом, работа в межсезонье благоприятна, а тепловой насос не теряет своей эффективности.

COP , COP .

.

KITA Впрыск пара: еще одна сильная сторона Kita

KITA

KITA

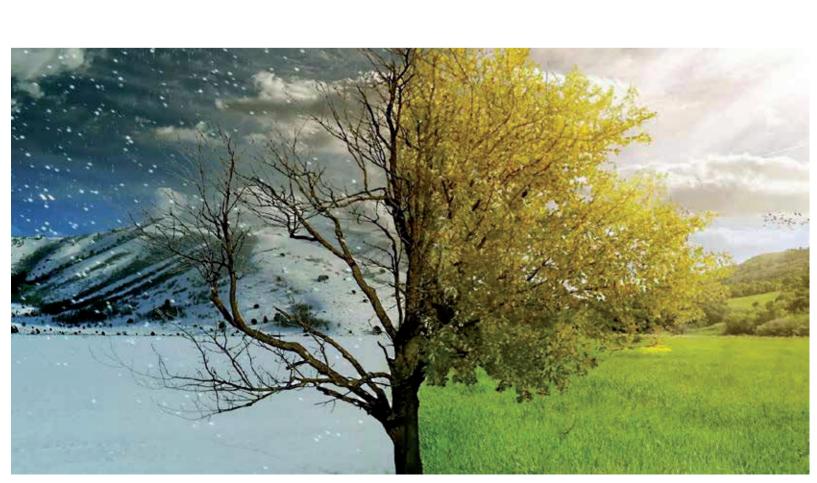
, KITA

, следующий

тип регулирования:

. Такое

управление установки, как в режиме диапазон


Kita использует увеличенный приемник жидкости, который позволяет подавать необходимое количество хладогена, которое оптимизирует работу в режиме чиллера, а также сохраняет излишек в зимний сезон. Этот компонент обеспечивает максимальную производительность в любом режиме. Кроме того, в режиме чиллера впрыск активен, как в зимний сезон, что значительно увеличивает производительность.

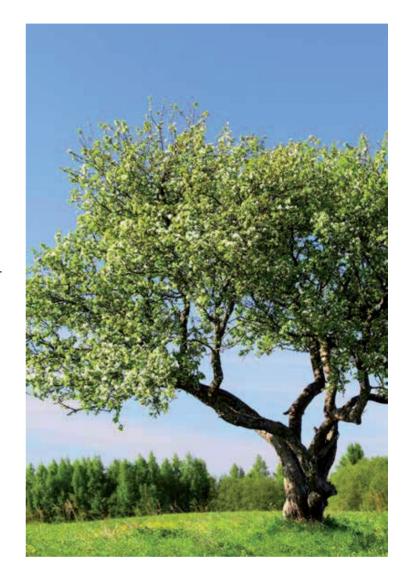
Таким образом, контролируя температуру испарения, тепловой насос может работать при высокой внешней температуре (до 35 ° C). В режиме чиллера контролируется температура конденсации, что позволяет работать в режиме чилера при очень низкой внешней температуре (до 10°C). Таким образом, данный тип управления, гарантирует работу при экстремальных условиях.

КІТА использует впрыск пара, когда внешние условия являются критическими, т.е. когда внешняя температура

высокая. В этих условиях нагнетание позволяет выполнить весь процесс сжатия, после чего температура

снижается, кроме того, улучшается процесс испарения.

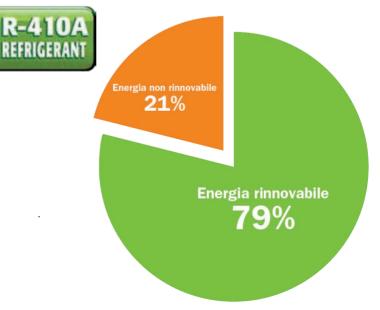
Бесплатная, возобновляемая энергия

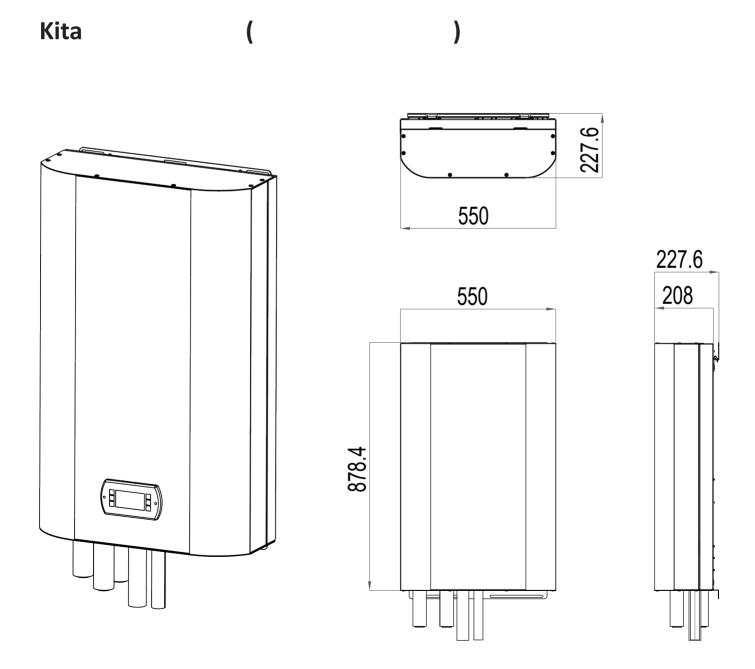

Тепловой насос отбирает энергию из окружающей среды и отдает ее в помещение. **Это тепло бесплатное**, **неограниченное** и **возобновляемое**.

Технология теплового насоса позволяет получить большую экономию энергии при высокой защите окружающей среды. Кita-это сокращение более, чем на 60% выбросов загрязняющих веществ, в частности, значительное сокращение выбросов CO2.

Благодаря высокой производительности, KITA может вырабатывать тепловую энергию с коэффициентом 5 относительно потребляемой электроэнергии.

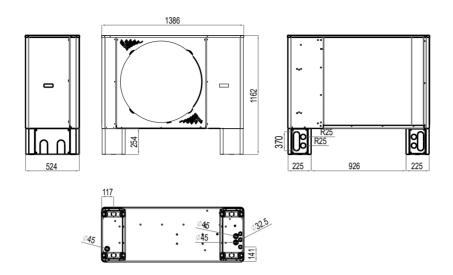
Цикл теплового насоса прост-эта система перемещает тепло от наружного воздуха к подаваемой воде (тепловой насос воздух-вода) с помощью хладагента, который является «транспортным средством» для тепла.


KITA объединяет простоту и надежность в одном устройстве.


Kita бережно относится к окружающей среде

R-410A,

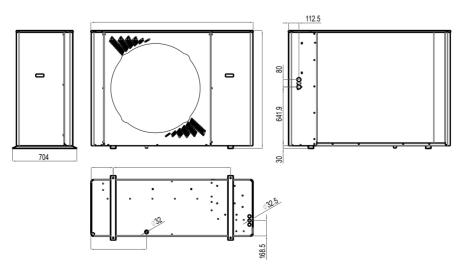
KITA



KITA



)


Kita S, S Plus S3Phase Plus (

KitaM,NBPhase NBPhasePlus(

Kita L, L42 L66 (

				S	/S ³ Pha	ise	S Plu	ıs / S3p Plus	hase	M /	M3Ph	ase	
			MU	Min.	Nom.	Max	Min.	Nom.	Max	Min.	Nom.	Max	
	7°C	Мощность	kW	2,70	4,98	10,00	3,44	6,18	12,48	4,36	8,66	16,58	
	35°C	СОР		4,88	5,16	4,49	4,83	5,14	4,29	4,86	5,15	4,38	
	2°C		kW	2,21	3,96	7,59	2,72	4,91	9,45	3,84	7,69	14,93	
	35°C	СОР		4,15	4,44	3,81	4,07	4,43	3,72	4,20	4,42	3,77	
	-7°C		kW	1,34	2,70	6,40	1,68	3,35	7,97	2,48	5,94	11,76	
	35°C	СОР		2,78	3,30	3,01	2,73	3,26	2,57	3,04	3,50	3,00	
D	-15°C		kW	-	2,15	4,85	-	2,80	6,00	1,88	4,69	9,28	
Режим нагрева	35°C	СОР		-	2,86	2,71	-	2,84	2,50	2,59	2,98	2,55	
	7°C		kW	2,14	4,35	9,87	2,69	5,45	12,32	4,02	7,72	13,37	
	55°C	СОР		2,82	3,03	2,71	2,74	2,81	2,31	2,90	3,07	2,59	
	2°C		kW	1,78	3,41	7,39	2,24	4,27	9,44	3,54	6,98	12,04	
	55°C	СОР		2,50	2,77	2,43	2,46	2,52	2,18	2,66	2,80	2,44	
	-10°C		kW	-	2,17	5,66	-	2,91	7,04	2,07	4,92	9,15	
	55°C	СОР		-	2,04	1,91	-	1,99	1,81	1,78	2,03	1,82	
	35°C	Мощность	kW	1,81	3,83	7,40	2,26	5,07	8,35	3,00	7,00	12,10	
Режим охлаждения —	7°C	EER		2,59	3,27	2,92	2,47	3,11	2,81	2,75	3,44	3,15	
олимдения	35°C 18°C	Мощность	kW	2,61	5,46	8,30	3,26	7,25	8,70	4,00	9,30	13,50	
	16 C	EER		3,90	4,70	4,20	3,70	4,50	4,00	4,09	4,85	4,58	
	Класс эн	нергоэффективности			A+++	•	A+++			A+++			
		Питание	V-Hz 2		-50 / 400	-3-50	230-	230-50 / 400-3-50			50 / 400-	-3-50	
Питание	Мах. элект	грическая мощность	kW	3,3			4,5			6			
Шум	Мах зву	/ковое давление	dB(A)	50			50			52			
		Тип		٦	Twin rota	ry	Twin rotary			Twin rotary			
Компрессор					1		1			1			
		Технология		Inverter BLDC		Inverter BLDC			Inverter BLDC				
		Модель			EBMPAP:	ST		EBMPAPS	T		EBMPAP:	ST	
		Тип двигателя			EC			EC			EC		
Вентилятор		Диаметр	mm		710		710				800		
		Мах потребление	kw		0.27		0.27				0.44		
		Скорость	об/мин		600		600			500			
Внешний		Количество рядов	ШТ		3			3			3	_	
теплообменник		Шаг оребрения	mm		2.5			2.5			2.5		
Внутренний		Тип					Паяны	й пластиі	чатый				
геплообменник		Материал			нерж			нерж			нерж		
Хладоген	_	Тип			R410A			R410A			R410A		
	Вес заправк	и (моноблок/сплит)	kg		5 / 5,5			5,5 / 6			6 / 6,5		
Fugnos	Номина	льный расход воды	л/ч		2400			2400			2400		
Гидравлический контур		Тип двигателя			EC			EC			EC		
	Мах потреб	бляемая мощность	W		75			75			75		
Bec	(нар	ужный+внутренний)	kg	180 (160 + 50	Split)	180 (10	60 + 50 Sp	lit)	220 (2	200 + 50	Split)	

Технические характеристики

		Пара Для сп		L66			L42			L33		Plus	hase	МЗР									
			MU	Max	Nom.	Min.	Max	Nom.	Min.	Max	Nom.	Min.	Max	Nom.	Min.								
	Воздух 7°С	Мощность	kW	35,00	21,28	16,28	31,90	19,40	14,84	25,52	15,52	11,87	20,21	10,56	5,31								
	Вода 35°С	COP		4,09	5,07	4,49	4,14	5,13	4,45	4,31	5,34	4,73	4,17	4,89	4,61								
_	Воздух 2°С	Мощность	kW	32,78	20,64	15,62	29,88	18,81	14,24	23,90	15,05	11,39	18,19	9,36	4,68								
	Вода 35°С	СОР		3,52	4,29	3,80	3,56	4,34	3,84	3,71	4,52	4	3,61	4,23	3,99								
_	Воздух -7°С			28,44	16,30	10,80	23,86	13,68	9,06	19,09	10,94	7,25	14,32	7,23	3,01								
	Вода 35°C	COP		2,93	3,23	2,81	2,96	3,26	2,84	3,08	3,40	2,96	2,84	3,31	2,88								
D	Воздух -15°С	Мощность	kW	23,10	12,18	-	19,25	10,15	5,45	15,40	8,12	4,36	11,47	5,80	2,32								
Режим нагрев	Вода 35 С	COP		2,39	2,64	-	2,42	2,67	2,27	2,52	2,78	2,36	2,43	2,83	2,46								
	Воздух 7°С	Мощность	kW	33,37	19,15	12,29	30,41	17,45	11,20	24,33	13,96	8,96	16,30	9,40	4,89								
	Вода 55°С	COP		3,18	3,91	3,32	3,22	3,96	3,35	3,35	4,12	3,49	2,46	2,91	2,75								
	Воздух 2°С	Мощность	kW	31,60	17,42	10,35	28,80	15,88	9,44	23,04	12,70	7,55	14,67	8,50	4,31								
	Вода 55°С	COP		2,66	3,27	2,77	2,69	3,30	2,80	2,80	3,44	2,92	2,33	2,66	2,51								
	Воздух -10°С	Мощность	kW	24,3	11.82	-	20,49	9,88	5,53	16,4	7,9	4,43	10,82	6,04	2,65								
	Вода 55°С	COP		1,81	2,12	-	1,83	2,13	1,81	1,91	2,23	1,89	1,73	1,93	1,68								
	Воздух 35°C Вода 7°C	Мощность	kW	25,30	18,32	10,08	22,30	12,65	5,65	18,54	10,22	4,65	14,07	8,72	3,75								
Downer	вода / С	EER		3,16	3,53	2,82	3,09	3,45	2,70	3,28	3,66	2,86	3,03	3,31	2,65								
Режим охлаждения	Воздух 35°С	Мощность	kW	32,50	23,90	13,17	26,90	16,50	7,50	21,80	13,40	5,80	15,90	11,35	4,90								
	Вода 18°С		4,62	4,85	4,12	4,48	4,74	4,00	4,75	5,04	4,25	4,35	4,66	3,93									
Класс эффективност				A+++			A+++		-	4++4	/	-	4++	1									
		V-Hz	400-3-50			400-3-50			0	400-3-50			100-3-5	4									
Питание	мощность	Питание Мах электрическая мощность			15,50 k		13,30			9			6,5										
Уровень шума	ение	Мах звуковое давля	dB(A)	55 dE			55				55			52									
		Тип		Scroll Inverter		Scro	ter	ll Inver	Scro	ter	ll Inver	Scro	ry	in rota	Tw								
Компрессор		Количество		1		1		1		1		1		1				1		, 30.	1		
		Технология		Vapour Injection		ur Injection		Vapo	ur Injection		Vapour Injection		erter Bl	Inve									
		Модель		EBMPAPST		EBMPAPST		Е	BMPAPST		EBMPAPST		EBMPAPST		EBMPAPST		ВМРАР	EI					
		Тип двигателя		EC			EC			EC		EC		EC		EC		EC					
Вентилятор		Двигатель	mm		910			800			800			800									
		Мах потребление	kw		0.625			0.44			0.44			0.44									
		Скорость	об/мин	(610			600			600			500									
Внешний		Количество рядов	шт		3			3			3			3									
теплообмен ні		Шаг оребрения			2,5			2,5			2,5			2,5									
Внешний		Тип					ъй	тинчат	й плас	Паяны													
теплообменни		Материал			нерж			нерж			нерж			нерж									
V = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =		Тип			R410A			R410A			R410A			R410A									
Хладоген	облок/сплит)	Вес заправки (моно	kg		12 / 13			11 / 12			11 / 12			6,5 / 7									
_	од воды	Номинальный расх	л/ч		3160			3160			2400			2400									
Гидравлическі контур		Тип двигателя			EC			EC			EC			EC									
1	і мощность	Мах потребляемая	W		185			185			75			75									
	нний)		11		280 (2) (260+		11.1	260.50	280 (2	Γ0	(200 +	220									

Leistungen / Performances / Performances

LW-246-15-18 / Version 3

	Prüfbedingung Condition d'essai Test condition	Heizleistung Puis. chauf. moy. Heating capacity kW	elek. Leistung Puis. elec. moy. Input power kW	T _{VL} T _{OUT} T _{OUT} °C	СОР	Cc	CR
1	A7 / W35-30 (87% r.H.)	11.867	2.337	- 2	5.08	23	0
2	A2 / W35 (84% r.H.)	12.153	2.832	-	4.29		=
3	A-15 / W35 (-% r.H.)	16.097	6.646	24	2.42	+	*
Α	A-7 / W34 (74% r.H.)	19.099	6.389	34.1	2.99	0.997	1.00
В	A2 / W30 (84% r.H.)	11.757	2.428	30.0	4.84	0.991	0.99
С	A7 / W27 (87% r.H.)	10.079	1.507	28.2	6.69	0.985	0.74
D	A12 / W24 (89% r.H.)	10.571	1.383	27.2	7.64	0.984	0.31
E	A-10 / W35 (-% r.H.)	17.718	6.282	33.4	2.82	0.996	1.22
F	A-7 / W34 (74% r.H.)	19.099	6.389	34.1	2.99	0.997	1.00

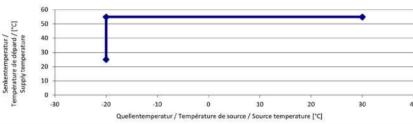
climate	average
Temperature application	low (35°C)
SCOP _{on} 4.93	SCOP 4.77
Labeling	A+++ / 190.7 %
Pdesignh [kW]	21.6
Tbivalent [°C]	-7

	Prüfbedingung Condition d'essai Test condition	Heizleistung Puis. chauf. moy. Heating capacity kW	elek. Leistung Puis. elec. moy. Input power kW	T _{VL} T _{OUT} T _{OUT} *C	COP	Cc	CR
1	A7 / W55-47 (87% r.H.)	14.024	4.470	9	3.14	8	- 3
2	A20 / W55 (52% r.H.)	15.155	3.788		4.00	28	(2)
Α	A-7 / W52 (74% r.H.)	19.546	8.761	52.0	2.23	0.997	1.00
В	A2 / W42 (84% r.H.)	11.997	3.183	42.1	3.77	0.993	0.99
С	A7 / W36 (87% r.H.)	9.952	1.938	37.3	5.13	0.989	0.77
D	A12 / W30 (89% r.H.)	10.827	1.579	34.2	6.85	0.986	0.31
E	A-10 / W55 (-% r.H.)	18.395	8.927	52.7	2.06	0.998	1.20
F	A-7 / W52 (74% r.H.)	19.546	8.761	52.0	2.23	0.997	1.00

climate	average
Temperature application	medium (55°C)
SCOP _{on} 3.84	SCOP 3.74
Labeling	A++ / 149.7 %
Pdesignh [kW]	22.1
Tbivalent [°C]	-7

Thermostat aus W 22.2 Stillstand W 22.2 Ausgeschaltet W 22.2 Off mode Carkerheizung W 31.4

Einsatzgrenzen / Limites d'utilisation / Operating range


Temperature conditions

Temperature conditions

Temperature conditions

A-20 / W55

A30 / W55

Sicherheitsprüfung nach
EN 14511-4 clause 4.2.3
nicht durchgeführt / n'est pas effectuée / not applied

Test de sécurité aux
EN 14511-4 clause 4.4
bestanden / passé avec succès / passed
EN 14511-4 clause 4.5
bestanden / passé avec succès / passed
bestanden / passé avec succès / passed
EN 14511-4 clause 4.6
bestanden / passé avec succès / passed
bestanden / passé avec succès / passed
bestanden / passé avec succès / passed

Schallleistungspegel bei / Niveau de puissance acoustique au / Sound power level at

Baureihe / Gamme de fabrication / Type series

¹ Herstellerangaben (ohne Gewähr)

 1 Manufacturer informations (no liability assumed)

		KITA L33 ¹				KITA L42 ¹			KITA L661		
		min	Nom	max	min	Nom	max	min	Nom	max	
A7 / W35 (Heating power)	kW	11.87	15.52	25.52	9.77	18.27	33.66	13.97	26.15	35.50	
A7 / W35 (COP)	-	4.72	5.34	4.30	4.64	5.19	4.34	4.56	5.07	4.22	
A2 / W35 (Heating power)	kW	11.39	15.05	23.90	8.19	16.70	29.30	12.04	22.88	34.43	
A2 / W35 (COP)	-	4.00	4.51	3.70	3.40	4.21	4.02	3.31	4.12	3.92	
A-7 / W35 (Heating power)	kW	7.25	10.94	18.71	5.99	14.49	25.20	8.80	18.22	28.77	
A-7 / W35 (COP)		2.96	3.40	3.08	3.00	3.50	3.15	2.92	3.43	3.06	

Outdoor measurement

LW-246-15-18 / Version 3 Page 2 of 2

ATTESTATO DI BREVETTO PER INVENZIONE INDUSTRIALE

N. 0001418877

Il presente brevetto viene concesso per l'invenzione della domanda sotto specificata:

num. domanda	anno	C.C.I.A.A.	data pres. domanda	classifica
000208	2013	PADOVA	25/07/2013	F24F11 00

TITOLARE/I

TEMPLARI SRL

RUBANO (PD)

MANDATARIO

ROCCHETTO ELENA

INDIRIZZO

UFFICIO VENETO BREVETTI

VIA SORIO 116 35141 PADOVA

TITOLO

POMPA DI CALORE INVERTIBILE CON FUNZIONE OTTIMIZZATA DI SBRINAMENTO O "DEFROSTING" SECONDO LA VALUTAZIONE DI

PARAMETRI CARATTERISTICI DI FUNZIONAMENTO

INVENTORE/I

MASIERO GIANLUCA

Roma, 26/10/2015

IL DIRIGENTE Dr.ssa Loredana Guglielmetti

via Pitagora, 20A - 35030 Rubano (PD) - Italia Tel. +39 049 5225929 - +39 049 8597400 - Fax +39 049 8055626 www.templari.com info@templari.com