
iDimension
QubeVu

Version 1.0

API GUIDE

PN 167741 Rev A

An ISO 9001 registered company
© Rice Lake Weighing Systems. All rights reserved.

Rice Lake Weighing Systems® is a registered trademark of
Rice Lake Weighing Systems.

All other brand or product names within this publication are trademarks or
registered trademarks of their respective companies.

All information contained within this publication is, to the best of our knowledge, complete
and accurate at the time of publication. Rice Lake Weighing Systems reserves the right to

make changes to the technology, features, specifications and design of the equipment
without notice.

The most current version of this publication, software, firmware and all other product
updates can be found on our website:

www.ricelake.com

http://www.ricelake.com/

	

QubeVu	API	Guide	 2	

1 Table of Contents

1	 TABLE	OF	CONTENTS	..	2	

2	 INTRODUCTION	..	4	

2.1	 PURPOSE	...	4	

2.2	 SCOPE	...	4	

3	 BACKGROUND	..	5	

4	 OVERVIEW	...	6	

5	 INTERFACE	SPECIFICATIONS	...	7	

5.1	 RETRIEVING	THE	DIMENSIONS	...	7	

5.2	 RETRIEVING	THE	IMAGE.	...	16	

5.3	 SETTING	ZERO	HEIGHT	OF	SCAN	PLATFORM	..	17	

5.3.1	 Zero	height	error	messages	..	17	

5.4	 RETRIEVING	BARCODES	..	18	

5.4.1	 Enabling	barcode	recognition	through	capture	definition	..	18	

5.5	 SETTING	THE	WEIGHT	FROM	AN	EXTERNAL	SCALE.	...	19	

5.6	 RETURNED	VALUES	..	20	

5.6.1	 Status	..	20	

5.6.2	 Extended	status	..	21	

5.7	 CAPTURE	DEFINITIONS	...	22	

5.7.1	 Creating	capture	definitions	...	22	

5.8	 SYSTEM	DATE	AND	TIME	...	25	

5.8.1	 Getting	system	time	..	25	

5.8.2	 Setting	system	time	and	time	zone	...	25	

6	 APPENDIX	A	–	SHORT	FORMAT	URLS	..	26	

7	 APPENDIX	B	–	SAMPLE	.NET	CLIENT	CODE	..	28	

8	 APPENDIX	C	–	C#	.NET	CODE	SAMPLES	...	30	

8.1	 DIM101	..	30	

8.2	 DIM102	..	30	

8.3	 DIM103	..	30	

8.4	 DIM104	..	30	

8.5	 EXTERNALTRIGGER	..	30	

8.6	 BARCODES	...	31	

8.7	 BARCODES2D	...	31	

	

QubeVu	API	Guide	 3	

8.8	 IMAGECONVERSION	..	31	

9	 APPENDIX	D	–	UNIVERSAL	WINDOWS	PLATFORM	SAMPLE	(C#)	..	32	

9.1	 DIM101	..	32	

10	 APPENDIX	E	–	QUBEVUBARCODES	CLIENT	API	..	33	

10.1	 FUNCTION	REFERENCE	...	33	

CreateReader	..	33	

DestroyReader	..	33	

RecognizeBarcode	..	33	

11	 APPENDIX	D	–	POSTEA.QUBEVU2DBCRECOGNITION	CLIENT	API	...	34	

11.1	 FUNCTION	REFERENCE	...	34	

BarcodeRecognizer2D(bcTypes2D)	...	34	

ReadImage(Image)	...	34	

12	 APPENDIX	E	–	SUPPORTED	BARCODES	..	35	

13	 APPENDIX	F	–	ITEMRECT	ILLUSTRATION	..	36	

	

	

QubeVu	API	Guide	 4	

2 Introduction

2.1 Purpose

This	document	specifies	how	a	QubeVu	can	be	connected	to	a	user’s	client	system	and	how	that	system	
can	then	obtain	information	from	the	QubeVu	about	an	item’s	dimensions	and	the	item’s	image.	

2.2 Scope

This	document	describes	only	the	web	service	interface	to	QubeVu.	The	web	service	interface	is	not	
supported	on	QubeVu	prior	to	QubeVu	Mark	4.	

Only	those	interfaces	that	support	dimensioning	and	image	retrieval	are	discussed	here.		

	

QubeVu	API	Guide	 5	

3 Background

QubeVu	provides	a	solution	to	the	problem	of	quickly	and	reliably	measuring	the	three	dimensions	of	a	
mail	item	as	part	of	the	mail	acceptance	or	handling	process.	It	also	provides	high	resolution	images	of	
the	top	surface	of	the	item	that	can	subsequently	be	used	for	various	purposes	including	barcode	
recognition	and	OCR	or	ICR1.	

It	often	operates	in	conjunction	with	a	weigh	scale	that	is	collecting	the	weight	of	the	item	and	the	
QubeVu	is	positioned	centrally	over	the	weigh	scale	so	that	the	dimensions	can	be	captured	at	the	same	
time	as	the	weight.	

The	QubeVu	is	able	to	automatically	recognise	that	an	item	has	been	placed	underneath	it	and	begin	the	
process	of	measurement	immediately.	Hence	this	information	can	already	be	available	by	the	time	the	
user’s	client	system	requires	it.	

On	installation	the	QubeVu	is	calibrated	to	suit	the	location	and	the	specific	characteristics	of	the	
individual	device.		

Configuration	data	for	the	QubeVu	is	held	in	files	on	its	embedded	data	storage.	

																																																													
1	OCR	or	ICR	capability	requires	a	separate	Leadtools	15	license	

	

QubeVu	API	Guide	 6	

4 Overview

The	QubeVu	connects	to	the	user’s	workstation	with	a	single	Ethernet	connector.		

The	QubeVu	requires	one	power	socket.	

No	specialised	software	components	or	drivers	are	installed	on	the	workstation.	All	necessary	software	
components	are	embedded	in	the	device.	Client	applications	can	interface	with	the	device	via	a	web	
service	interface.	The	web	service	starts	automatically	when	the	device	is	started.		

The	interface	components	defined	in	this	document	provide	the	mechanism	by	which	the	client	
application	can	communicate	with	the	QubeVu.	

The	client	processing	is	started	by	the	user	in	response	to	the	package	being	presented	by	the	customer	
and	after	the	item	has	been	placed	under	the	QubeVu.	

There	is	a	separation	between	the	client	support	interface	and	the	internal	operation	of	the	QubeVu	
software	within	the	service.	The	client	interfaces	read	what	information	is	currently	available	from	the	
QubeVu	and	report	the	status	of	the	information.	These	calls	do	not	block	waiting	for	the	required	
information.	This	is	to	prevent	the	client	interface	hanging	in	indeterminate	circumstances.	

The	client	application	will	therefore	probably	want	to	implement	some	form	of	delayed	loop	to	read	the	
QubeVu	information	by	monitoring	the	status	on	the	interface	it	is	calling.	It	may	also	implement	its	own	
time-out	to	prevent	the	UI	hanging	indefinitely	if	there	is	a	problem.	

The	web	service	can	be	found	at	the	following	url:	http://{device}/WebServices/QubeVuService.	

The	web	service	supports	the	HTTPPost	binding.	Client	must	use	this	binding	to	interact	with	the	service.	
A	C#	proxy	class	(QubeVuServiceHttpPostClient.cs)	for	the	service	is	available	as	part	of	the	API.	Other	
proxy	classes	may	be	generated	if	necessary	from	the	WSDL	file.	The	WSDL	file	of	this	service	can	be	
found	at	http://{device}	/WebServices/QubeVuService.	A	second	C#	proxy	class	
(QubeVuServiceAsyncClient.cs)	is	available	for	use	with	Windows	Store	apps	and	Universal	Windows	
Platform	development	projects	(including,	but	not	limited	to	Windows	IoT).	

	

QubeVu	API	Guide	 7	

5 Interface Specifications

The	interfaces	are	implemented	within	the	QubeVuService	web	service.	

Information	is	only	available	while	an	item	is	on	the	QubeVu	and	the	QubeVu	has	had	time	to	process	it.	
Once	the	item	is	removed	the	information	is	no	longer	available.		

Status	information,	including	information	about	the	mail	item,	is	retrieved	through	the	Status	method.	
The	Status	method	only	returns	a	URL	for	any	images	captured.	Image	content	is	retrieved	using	
standard	HTTP	requests.	

An	XML	Error	element	with	the	error	message	will	be	returned	in	the	event	of	a	software	error.	

5.1 Retrieving the Dimensions

This	uses	the	Status	interface:	QubeVuService/Status.	

It	returns	a	single	string	value	containing	an	XML	document.	

The	actual	content	of	the	XML	depends	on	whether	the	call	is	successful	or	not.	This	reflected	in	the	
Error	element.	

• If	the	call	is	successful	then	there	is	no	Error	element.	
• If	the	call	fails,	then	an	error	code	and	an	error	message	are	returned.	
• There	may	be	no	data	as	the	call	is	too	soon	after	the	item	was	placed	under	the	QubeVu.	In	this	

case	there	will	be	no	Dimensions	element	and	the	status	attribute	will	indicate	why.	Dimensions	are	
only	available	when	status	is	set	to	IMAGING	or	REMOVE	–	see	below	for	other	values.	

<QVStatus
 CaptureId="string"
 Status="string"
 ExtendedStatus="string"
 OutOfBounds="int"
>
 <ExternalData>
 <Barcode>
 <TextData>string</TextData>
 </Barcode>
 </ExternalData>
 <Error Code="int" Message="string">
 <CapturedData CaptureDefinitionName="string"> [Only present if available]
 <DateTime>string</DateTime>
 <Weight>float</Weight>
 <ScaleData>
 <Error Code="int" Message="string"> [Only present if error]
 <Weight>int</Weight>
 <ScaleFactor>int</ScaleFactor>
 <IsStable>boolean</IsStable>
 <WeightUnit>string</WeightUnit>
 <RawData>string</RawData>
 <DisplayWeight>string</DisplayWeight>
 </ScaleData>
 <Dimensions [Only present if available]

	

QubeVu	API	Guide	 8	

 Irregular="boolean"
 Undersize="int"
 Oversize="int"
 Refinement="int"
 DimUnit="string"
 OutOfBounds="int"
 UnknownDimensions="boolean"
 UnknownDimensionsReason="string">
 <Height>decimal</Height>
 <Length>decimal</Length>
 <Width>decimal</Width>
 </Dimensions>
 <TrackerImage /> [Only present if available]
 <LowResImages> [Only present if available]
 <LowResImage /> [Only present if available]
 </LowResImages>
 <HighResImages> [Only present if available]
 <HighResImage> [Only present if available]
 <Barcodes/>
 </HighResImage>
 </HighResImages>
 </CapturedData>
 <Crc>string</Crc>
</QVStatus>

This	not	a	blocking	call	and	may	require	the	client	to	use	a	delayed	loop	to	call	it	until	it	returns	the	
required	response.	

/QVStatus Top level wrapper element

./@CaptureId Sequential capture identifier.
CaptureId is incremented each
time QubeVu processes an item
and is reset when the system is
restarted.

./@Status The current status of the
device/operation. See below for
more details.

./@ExtendedStatus Extended information about the
status of the device/operation.
See below for more details.

./@OutOfBounds Flag indicating that an item
extends out of the sensor’s field
of view. (1) Left, (2) Right, (4)
Top, (8) Bottom or a
combination of these.

	

QubeVu	API	Guide	 9	

/QVStatus/Error Error details

./@Code Error Code

./@Message Error Message

/QVStatus/CapturedData Data captured by QubeVu

./@CaptureDefinitionName Name of capture definition that
has triggered the capture

./@CaptureId Sequential capture identifier.
CaptureId is incremented each
time QubeVu processes an item
and is reset when the system is
restarted.

./ExternalData/Barcode/TextData The data read by the externally
attached USB scanner.

(firmware 4.6.2 and higher)

./DateTime The date and time of the scan.

./ScaleData Data reported from attached
scale or received through Scale
Service interface.

 ./Error Scale-specific error details

 ./@Code Error code

 ./@Message Error message

 ./Weight The weight of the item as an
integer. Use scale factor to find
number of decimal places.

 ./ScaleFactor Indicates the number of
decimals in ./Weight

 ./IsStable Indicates whether the weight is
stable or not.

 ./WeightUnit Specifies the unit in use for the
weight.

 ./RawData Hex encoded raw data as
received from the scale.

	

QubeVu	API	Guide	 10	

 ./DisplayWeight Weight and unit reported from
the scale using the scale’s own
unit settings and display format.

/QVStatus/CapturedData/Dimensions The dimensions of the item

./@Irregular Irregular shaped object (true or
false)

./@Undersize Flag indicating undersize Height
(4) or Width (2) or Length (1) or
a combination of these.

./@Oversize Flag indicating oversize Height
(4) or Width (2) or Length (1) or
a combination of these.

./@Refinement Refinement of Width (2) or
Length (1) or a combination of
these.

The Refinement field is a bit
field indicating the refinement
state of each dimension and
whether the current certificate
settings require the dimensions
to be refined.

bit1 := set if Length is refined

bit2 := set if Width is refined

bit3 := set if Height is refined

bit4 := set if refinement is
required (this is set under
certification settings)

If refinement is not required (i.e.
bit4 is not set) then the other
bits should be ignored.

As an example a value of 8

	

QubeVu	API	Guide	 11	

means that refinement is
required and Length, Width and
Height are refined.

Note that for the LTL system,
refinement is not required.

./@DimUnit The unit of measure. Valid
values are ‘in’, ‘mm’, ‘cm’ and
‘m’.

./@OutOfBounds Flag indicating that an item
extends out of the sensor’s field
of view. (1) Left, (2) Right, (4)
Top, (8) Bottom or a
combination of these.

./@UnknownDimensions When dimensions cannot not be
determined the unit returns 0-s
for length, width and height and
this indicator is set to true.

(firmware 4.4.2 and higher)

./@UnknownDimensionsReason When dimensions cannot not be
determined and
UnknownDimensions is true,
the
UnknownDimensionsReason
attribute provides additional
information about why the
system was not able to
dimension the item. For possible
values and explanations, please
see end of this section.

(firmware 4.4.2 and higher)

./Length Length of object (longer
dimension in the X,Y plane)

./Width Width of object (shorter
dimension in the X,Y plane)

./Height Height of object (dimension in

	

QubeVu	API	Guide	 12	

the Z plane)

/QVStatus/CapturedData/RawDimensions Included if raw (unrounded)
dimensions are enabled

./Length Length of object (longer
dimension in the X,Y plane)

./Width Width of object (shorter
dimension in the X,Y plane)

./Height Height of object (dimension in
the Z plane)

/QVStatus/CapturedData/LowResImages Wrapper for zero or more
LowResImage elements

/QVStatus/CapturedData/LowResImages/LowResImage

./@Url URL of low-res image

./@Name

./ItemRect Either this element or
ItemWireframe is filled in.

./ItemRect/CenterX

./ItemRect/CenterY

./ItemRect/D1

./ItemRect/D2

./ItemRect/Theta

./ItemWireframe Either this element or
ItemWireRect is filled in.

./ItemWireframe/Faces Multiple faces may be defined

./ItemWireframe/Faces/Face

 ./@Visible “false” if specified face is
obstructed from view, “true” if
visible

	

QubeVu	API	Guide	 13	

 ./Vertices Multiple points may be defined
under this element

 ./Point

 ./X X pixel coordinate of the vertex

 ./Y Y pixel coordinate of the vertex

/QVStatus/CapturedData/HighResImages Wrapper for zero or more
HighResImage elements

/QVStatus/CapturedData/HighResImages/HighResImage

./@Url URL of high-res image

./@Name

./ItemRect Either this element or
ItemWireframe is filled in.

./ItemRect/CenterX

./ItemRect/CenterY

./ItemRect/D1

./ItemRect/D2

./ItemRect/Theta

./ItemWireframe Either this element or
ItemWireRect is filled in.

./ItemWireframe/Faces Multiple faces may be defined

./ItemWireframe/Faces/Face

 ./@Visible “false” if specified face is
obstructed from view, “true” if
visible

 ./Vertices Multiple points may be defined
under this element

 ./Point

 ./X X pixel coordinate of the vertex

	

QubeVu	API	Guide	 14	

 ./Y Y pixel coordinate of the vertex

./Barcodes Multiple Barcode elements, one
for each barcode found, may
appear under this item.

./Barcodes/Barcode Details of a single barcode

 ./RawData Barcode value (deprecated)

 ./EncodedData Barcode value in hex encoded
format

 ./DecodedData Barcode value

 ./TextData Barcode value

/QVStatus/CapturedData/TrackerImage Details of low resolution image
used for finding item

./@Url

./@Name

./ItemRect Either this element or
ItemWireframe is filled in

./ItemRect Either this element or
ItemWireframe is filled in.

./ItemRect/CenterX

./ItemRect/CenterY

./ItemRect/D1

./ItemRect/D2

./ItemRect/Theta

./ItemWireframe Either this element or
ItemWireRect is filled in.

./ItemWireframe/Faces Multiple faces may be defined

./ItemWireframe/Faces/Face

 ./@Visible “false” if specified face is
obstructed from view, “true” if
visible

	

QubeVu	API	Guide	 15	

 ./Vertices Multiple points may be defined
under this element

 ./Point

 ./X

 ./Y

/QVStatus/Crc Hex string of CRC32 checksum
generated over the entire
response string prior to inserting
the CRC element.
To validate checksum, calculate
CRC32 over the entire response
as it was received but exclude
the CRC element and then
compare to value stored in this
element. Note that checksum
includes all characters including
whitespace and therefore cannot
be calculated on an xml string
that has been reconstructed by
an xml parser from the parsed
nodes.

	

Error	codes	and	message:	

Error	
Code	 Message	
0	 None.	
1	 Hardware	Initialization	FAILED.	
2	 Tracker	Config	Initialization	FAILED.	
3	 Missing	RegistrationMarksCropped.bmp.	
4	 Setting	reference	image	for	Targetfinder	FAILED.	
5	 Loading	of	Calibration	files	FAILED.	
6	 Getting	new	Images	from	hardware	FAILED.	
7	 Tracking	FAILED.	
8	 Calibrating.	
9	 TCP	Server	Port	binding	failed	
10	 TCP	Server	exception	in	Processing	Client	
11	 TCP	Server	time	out	on	Imaging	

	

QubeVu	API	Guide	 16	

12	 Low	res	camera	needs	to	be	calibrated	first!	
13	 Calibration	stopped.	
14	 Error	loading	/	parsing	Configuration.	
15	 Unable	to	save	Calibration	to	file.	

16	 Unable	to	use	name	set	in	Capture/Get	Command.	CaptureDefinition	with	name	were	
not	set.	

17	 Invalid	CaptureDefinition	command.	
18	 Unable	to	delete	Calibration	files.	
19	 Unable	to	Zero	Height	
20	 Failed	to	write	or	verify	audit	trail	
	

Scale-specific	error	codes	and	messages:	

Error	
Code	 Message	
0	 None.	
1	 Time	out	waiting	for	stable	weight.	
	

UnknownDimensionReason	codes	and	explanation:	

UnknownDimensionReason	
Code	 Explanation	

<blank>	 Dimensions	determination	successful.	(UnknownDimensions	
attribute	is	set	to	“false”)	

Timeout	 Dimensions	could	not	be	established	within	system	specified	
timeout	period.	

InvalidBackground	
Dimensions	could	not	be	established	because	item-free	
background	could	not	be	acquired.	Please	clear	the	platform,	
zero	the	height	and	try	to	scan	again.	

InvalidBackgroundOrOutOfBounds	

Dimensions	could	not	be	established	because	object	is	out	of	
bounds	or	item-free	background	could	not	be	acquired.	Please	
clear	the	platform,	zero	the	height	and	try	to	scan	again	by	
placing	the	item	completely	within	the	scan	zone.	

NoDimItem	 Dimensions	could	not	be	established	because	system	is	
configured	not	to	measure	this	type	of	item.	

InvalidDepthData	 Dimensions	could	not	be	established	due	to	an	unexpected	
inconsistency	in	the	measured	depth	data.	

Unknown	 Dimensions	could	not	be	established;	reason	not	given.	
	

5.2 Retrieving the Image.

In	designing	the	client	dialogue	that	uses	the	QubeVu	it	should	be	kept	in	mind	that	the	QubeVu	image	
is	available	some	time	later	than	the	dimensions	as	it	has	to	determine	the	dimensions	before	it	can	

	

QubeVu	API	Guide	 17	

adjust	the	camera	to	take	the	image(s).	The	transfer	time	of	the	images	to	the	workstation	also	takes	a	
finite	time.	

The	image	returned	is	of	the	top	face	of	item.	The	high	resolution	camera	will	zoom	in	according	to	the	
parameters	specified	in	the	capture	definition.	

This	uses	HTTP	GET:	GET	{image	url}	HTTP/1.1	

The	image	url	is	retrieved	from	the	response	of	a	successful	Status	call	as	described	above.	The	image	is	
only	available	if	the	status	value	is	set	to	REMOVE.	

It	returns	an	image	file	in	bitmap	format.	The	colour	depth	and	resolution	of	the	image	depends	on	the	
parameters	specified	in	the	capture	definition.	

5.3 Setting zero height of scan platform

The	QubeVu	device	records	the	distance	between	the	camera	and	the	plane	of	the	baseplate	during	
calibration.	The	base	platform	height	changes	when	a	scale,	which	rests	on	the	baseplate,	is	attached	or	
removed	from	the	QubeVu	setup.	When	such	a	change	in	base	platform	height	occurs	it	is	necessary	to	
tell	the	device	to	measure	the	height	of	the	distance	between	the	base	and	the	camera	anew.	This	
process	is	referred	to	as	“zeroing	height”.	Customers	must	perform	a	zero	height	operation	when	the	
effective	platform	is	raised	or	lowered	for	any	reason	or	the	device	will	likely	not	scan	items	until	this	
operation	is	successfully	performed.	(This	API	call	does	not	require	QubeVu	tracker	to	be	restarted.)	

Zeroing	height	on	the	QubeVu	device	involves	placing	the	calibration	object	on	the	platform,	stepping	
back	and	then	making	the	API	call	below	with	“true”	passed	in	as	parameter.	If	the	platform	has	a	
completely	smooth,	uniform	surface,	then	it	is	not	necessary	to	use	a	calibration	object.	If	the	surface	
has	any	bumps,	ridges,	a	scale	with	textured	top	plate	or	it	has	rollers	then	a	calibration	object	must	be	
placed	on	the	platform	before	calling	SetZeroHeight.	Only	when	the	base	plane	is	completely	smooth	
and	flat	(a	dot	or	graphic	or	pattern	is	OK	as	long	as	it’s	flat	and	level	with	the	baseplate)	then	you	can	
call	the	API	with	the	“false”	argument	and	NOT	use	a	calibration	object	for	the	zero	height	process.	

Method	signature:	

QVServiceResponse SetZeroHeight(bool usingCalibrationObject)
	

The	process	usually	takes	1-6	seconds.	During	this	time	the	device	should	be	left	undisturbed.	The	
method	returns	a	single	string	value	containing	an	XML	document:	
<QVServiceResponse>
 <Error Code="int" Message="string" >
</QVServiceResponse>
	

At	this	point	the	calibration	object	may	be	removed	from	the	platform	(if	one	was	used).	Error	Code	0	
indicates	a	successful	zero	height	outcome.	Any	error	code	other	than	0	should	be	interpreted	as	failure	
to	zeroing	height.	It	is	recommended	that	implementers	of	the	zero	height	process	offer	users	a	chance	
to	retry	zeroing	the	height	upon	failure.	A	retry	simply	means	another	call	to	SetZeroHeight	as	before.	

5.3.1 Zero height error messages

Message	 Meaning	and	Resolution	

	

QubeVu	API	Guide	 18	

Motion	
detected	

Motion	was	detected	during	the	zero	height	process.	Please	make	sure	to	not	interfere	
with	the	device	during	zero	height	operation.	Leave	the	platform	clear	of	objects	
completely	or	leave	the	platform	with	just	the	calibration	object	placed	on	top	of	the	
scale	(if	one	is	used)	or	other	non-smooth	surface.	

Height	not	
stable	

Please	make	sure	to	not	interfere	with	the	device	during	zero	height	operation	and	try	
zeroing	height	again.	If	problem	persists	please	contact	Postea	support.	

Change	in	
height	
exceeded	set	
value	

There	was	an	unexpectedly	large	difference	in	previously	known	height	and	newly	
measured	height.	To	remedy	this	situation	please	make	sure	that	the	new	height	is	
closer	to	the	originally	measured	height	or	alternatively,	you	may	increase	the	Zero	
height	max	change	(ZeroHeightChangeMaxMM)	configuration	item	in	Admin	tools	!	
Measurement	Settings.	

5.4 Retrieving barcodes

Reading	barcodes	requires	the	capture	of	an	image	by	the	high	resolution	camera	typically	at	140dpi	or	
better	but	the	actual	resolution	will	depend	on	the	barcode	to	be	recognized.	QubeVu	provides	two	
approaches	to	retrieve	barcodes	from	the	captured	high	resolution	images.	

One	approach	is	to	simply	specify	the	types	of	barcodes	of	interest	in	the	capture	definition.	Once	this	is	
setup	then	QubeVu	will	search	for	barcodes	in	the	corresponding	high	resolution	images	and	will	return	
the	values	of	each	barcode	found	in	response	to	a	Status	along	with	the	high	resolution	images’	urls.	The	
found	barcodes	are	returned	in	the	Barcodes	element	of	each	HighResImage.	

Another	approach	is	to	use	the	QubeVuBarcodes	Client	API.	This	API	can	be	used	by	the	client	
application	to	find	barcodes	from	a	high	resolution	image	captured	by	QubeVu.	The	API	is	simple	to	use	
and	is	described	in	detail	in	Appendix	B.		

The	benefit	of	using	the	client	API	is	that	it	can	take	advantage	of	the	fast	processors	of	the	client	
hardware	and	get	the	results	faster.	

Note	that	the	number	of	barcode	types	enabled	will	have	an	effect	on	performance;	the	more	barcode	
types	that	are	enabled	the	longer	it	will	take	to	process	an	image.	For	optimum	performance	minimize	
the	number	of	barcode	types	that	are	enabled.	

5.4.1 Enabling barcode recognition through capture definition

Use	the	CreateCaptureDefinition	interface	to	enable	barcode	recognition.	

E.g.	

<CaptureDefinitionDetail Name=\"autotriggerparcel\">
 <TimeoutMsecs>0</TimeoutMsecs>
 <NoDimItems>Flat</NoDimItems>
 <LowResImages></LowResImages>
 <HighResImages>
 <HighResCamCapture ImageName=\"HighResImage1\">
 <MinDpi>140</MinDpi>
 <MaxDpi>140</MaxDpi>
 <BarcodeCapture>
 <BCTypes>CODE128 CODE93 CODE39</BCTypes>
 </BarcodeCapture>

	

QubeVu	API	Guide	 19	

 </HighResCamCapture>
 </HighResImages>
</CaptureDefinitionDetail>
	

For	information	on	the	CreateCaptureDefinition	interface	please	see	the	Capture	Definitions	section	
below.	

5.5 Setting the weight from an external scale.

In	a	typical	configuration	a	weighing	scale	is	connected	to	QubeVu	to	detect	item	placement	and	
removal.	In	some	situations	it	may	be	necessary	to	have	the	scale	connected	to	the	client	computer	
directly	rather	than	to	the	QubeVu	device.	One	such	scenario	is	where	there	is	an	existing	client	
application	that	requires	direct	control	of	the	scale.	Operating	QubeVu	with	an	external	scale	requires	
that	the	‘Scale	type’	configuration	item	be	set	to	‘EXTERNAL’	and	that	a	process	on	the	client	computer	
monitors	the	scale	and	notifies	QubeVu	of	any	weight	changes.	It	is	important	that	the	weight	change	
notification	happens	in	a	timely	fashion	to	ensure	that	it	is	in	synch	with	what	the	scan	head	sees.	

	
Figure	1	-	External	scale	configuration	

Client	application	must	use	the	QubeVu’s	scale	service	to	notify	the	device	of	any	weight	change	when	
using	the	external	scale	configuration.	The	scale	web	service	can	be	found	at	the	following	url:	
http://{device}/WebServices/ScaleService.	

	

QubeVu	API	Guide	 20	

Use	the	ScaleService/SetCurrentWeight	web	service	method	to	notify	QubeVu	of	any	weight	changes,	
regardless	of	whether	the	weight	is	zero	or	not	or	the	weight	is	stable	or	not.	

It	is	important	to	note	that	when	the	QubeVu	first	starts	up	it	will	not	enter	the	‘Ready’	state	until	it	has	
been	notified	that	there	is	a	stable	zero	weight	being	output	from	the	scale.		This	will	be	automatically	
detected	if	the	scale	is	connected	directly	to	the	QubeVu	but	must	be	communicated	to	the	QubeVu	via	
the	SetCurrentWeight	web	service	method	when	using	an	external	scale	configuration.	

	
The	best	way	to	implement	this	is	to	use	a	background	process/thread/task	that	constantly	queries	the	
current	weight	from	the	scale	and	then	calls	the	SetCurrentWeight	method	with	the	values	received	
from	the	scale.	

Method	signature:	

QVServiceResponse SetCurrentWeight(int weight, int scaleFactor, bool isStable,
string weightUnit)
	

weight	-	The	current	weight	returned	by	the	scale.	

scaleFactor	–	A	positive	of	negative	power	of	ten	to	be	used	to	multiply	the	value	in	weight	to	get	the	
actual	weight	in	the	specified	units.	

isStable	–	Indicates	whether	the	specified	weight	reading	is	stable	or	not.	A	stable	weight	is	required	to	
start	capture.	A	stable	zero	weight	is	required	for	background	updates,	however,	a	non-stable	zero	
weight	or	drop	in	weight	will	signal	item	removal/or	replacement.	

weightUnit	–	The	unit	of	the	weight	specified.	Currently	supported	units	are	‘g’	for	grams	and	‘oz’	for	
ounces.	

	

The	method	returns	a	single	string	value	containing	an	XML	document.	

<QVServiceResponse>
 <Error Code="int" Message="string" > [Only present if error]
 <CapturedData CaptureDefinitionName="string"> [Only present if available]
</QVServiceResponse>	

	

5.6 Returned values

5.6.1 Status

Status	value	 Meaning	

STARTING	 The	service	is	starting	up.		

STARTED	 The	service	has	started	but	is	not	ready	for	processing.	If	the	device	is	in	this	status	for	
more	than	a	couple	of	seconds	after	starting	then	it	is	very	likely	that	there	is	an	item	
on	the	platform	that	needs	to	be	removed.	The	platform	should	be	clear	when	the	
device/service	is	starting.		

READY	 The	device	is	ready	and	waiting	to	be	used	–	there	is	no	item	on	it.	

	

QubeVu	API	Guide	 21	

TRACKING	 The	device	is	processing	a	change	in	image	after	an	item	has	been	placed	under	it.	

IMAGING	 The	device	measurements	have	been	determined	and	the	camera	is	being	adjusted	to	
take	the	image.	

REMOVE	 The	image	has	been	fully	processed	–	the	item	can	be	removed	when	the	client	
processing	has	completed.	

WAIT	 Preparing	the	device	for	the	next	item.	The	previous	image	and	dimensions	are	deleted	
from	memory	and	the	lens	is	reset.	

STOPPED	 The	service	has	stopped	–	there	is	some	problem.		

CALIBRATING	 The	device	is	in	calibration	mode.	

CONFIGURING	 The	device	is	in	configuration	mode.	

5.6.2 Extended status

The	returned	extended	status	attribute	contains	none	or	more	comma	separated	strings	that	provide	
additional	information	about	the	status	of	the	device.	

Constraint	value	 Meaning	

ScaleNotStable	 This	is	set	during	tracking	if	the	scale	indicates	that	the	value	returned	is	not	a	
stable	value.	This	is	only	used	when	a	recognized	scale	is	connected	to	the	
system.	Processing	will	not	progress	to	the	next	step	until	this	flag	is	cleared	by	
receiving	a	stable	weight	from	the	scale.	

MotionDetected	 This	is	set	during	tracking	and	ready	states	and	indicates	that	the	system	has	
detected	movement.	Processing	will	not	progress	to	the	next	step	while	this	is	
set.	

ItemDetected	 This	is	set	when	the	system	has	detected	that	an	item	is	placed	on	the	device	
platform/scale.	When	a	scale	is	used	this	indicates	that	weight	returned	is	not	
zero.	In	‘scale-less’	mode	this	indicates	that	the	system	cannot	find	the	target	
panel.	

ItemNotDetected	 This	is	set	when	the	system	is	in	ready	mode	and	there	is	no	item	on	the	
platform/scale.	

TrackerNotConfident	 This	indicates	that	the	tracker	detected	an	item	but	it	is	not	confident	what	the	
dimensions	of	the	item	are.	After	a	timeout	(configurable)	the	system	will	
progress	to	next	step	and	return	zero-valued	dimensions.	

ExceptionOccured	 This	is	set	when	an	exception	occurs.	

DeviceNotStable	 This	is	set	during	tracking	if	one	of	the	sensors	indicates	that	the	sensor	value	
returned	is	not	a	stable	value.	Processing	will	not	progress	to	the	next	step	until	
this	flag	is	cleared	by	receiving	a	stable	value	from	the	sensor.	

ServiceStarting	 This	is	set	when	the	system	is	initializing.	

ConfigMode	 This	is	set	when	the	system	is	in	configuration	mode,	such	as	during	calibration	
or	image	exposure	adjustment.	A	restart	operation	takes	the	device	out	of	
configuration	mode.	

	

QubeVu	API	Guide	 22	

ResultNotStable	 This	is	set	when	the	item	is	being	manipulated	such	as	when	the	item	is	in	the	act	
of	being	placed	on	the	platform	or	removed	from	it.	

ItemOutOfBounds	 This	indicates	that	the	item	protrudes	outside	the	measurable	area.	A	
repositioning	of	the	item	is	necessary.	

WaitingToWarmUp	 This	is	set	during	the	warmup	period.	If	device	is	used	in	a	certified-for-trade	
application	the	warm-up	period	must	have	been	elapsed	before	certified	
measurements	can	be	taken.	

PlatformNotClear	 This	is	set	when	there	is	something	on	the	platform.	

5.7 Capture definitions

5.7.1 Creating capture definitions

Use	the	CreateCaptureDefinition	interface:	QubeVuService/CreateCaptureDefinition	

Method	signature:	

QVServiceResponse CreateCaptureDefinition(string name, string definitionString)
	

name	-		The	name	of	the	capture	definition	to	be	created	

definitionString	–	The	XML	string	describing	the	capture	definition.	

<CaptureDefinitionDetail Name="string" >
 <TimeoutMsecs>int</TimeoutMsecs>
 <NoDimItems>nodim_options</NoDimItems>
 <LowResImages>
 <LowResCamCapture ImageName="string" >
 <ResX>int</ResX><ResY>int</ResY>
 <Markings>
 <SerialNumber Visible="boolean"/>
 <DateTimeStamp Visible="boolean"/>
 <ScanId Visible="boolean"/>
 <Dimensions Visible="boolean"/>
 <Indicators Visible="boolean"/>
 <ItemOutline Visible="boolean"/>
 </Markings>
 </LowResCamCapture>
 </LowResImages>
 <HighResImages>
 <HighResCamCapture ImageName="string">
 <MinDpi>int</MinDpi>
 <MaxDpi>int</MaxDpi>
 <BarcodeCapture>
 <BCTypes>bctype_list</BCTypes>
 </BarcodeCapture>
 </HighResCamCapture>
 </HighResImages>
</CaptureDefinitionDetail>
	

The	method	returns	a	single	string	value	containing	an	XML	document.	

	

QubeVu	API	Guide	 23	

<QVServiceResponse>
 <Error Code="int" Message="string" > [Only present if error]
 <CapturedData CaptureDefinitionName="string"> [Only present if available]
</QVServiceResponse>	

	

/CaptureDefinitionDetail Top level wrapper element

./@Name Name of the capture
definition.

./TimeoutMsecs The system will report a
timeout when it is unable to
detect an item within the time
specified by the capture
definition. If the timeout is set
to zero, then system will
continue trying indefinitely.

(firmware 4.4.2 and higher)

./NoDimItems Specifies the type of items
that should be processed
without dimensioning. For
LTL systems this must be set
to ‘None’. See table below for
more options.

/CaptureDefinitionDetail/LowResImages/LowResCamCapture Low resolution image
parameters

./ResX Specifies the X resolution of
the low resolution image to
be taken. For LTL sytems this
should be 640.

./ResY Specifies the Y resolution of
the low resolution image to
be taken. For LTL sytems this
should be 480.

./Markings/SerialNumber/@Visible Specifies whether to show the
serial number on the low
resolution image.

	

QubeVu	API	Guide	 24	

./Markings/DateTimeStamp/@Visible Specifies whether to show the
date/time stamp on the low
resolution image.

./Markings/ScanId/@Visible Specifies whether to show the
scan id on the low resolution
image.

./Markings/Dimensions/@Visible Specifies whether to show the
dimensions on the low
resolution image.

./Markings/Indicators/@Visible Specifies whether to show the
indicators (over size, under
size, unrefined) on the low
resolution image.

./Markings/ItemOutline/@Visible Specifies whether to show the
item outline (bounding box)
on the low resolution image.

/CaptureDefinitionDetail/HighResImages/HighResCamCapture High resolution image
parameters. Not applicable to
LTL systems.

	

The	following	table	describes	the	valid	values	for	nodim_options.	

No	dim	option	 Meaning	

None	 Dimension	all	items.	This	is	the	default.	

Flat	 Do	not	try	dimensioning	flats	–	i.e.	items	that	are	
taller	than	the	flat	threshold.	

Parcel	 Do	not	try	dimensioning	parcels-	i.e.	items	than	
that	are	not	taller	than	the	flat	threshold.	

All	 Do	not	try	dimensioning	any	items.	

	

The	following	table	describes	the	valid	values	for	bctype_list.	Multiple	values	must	be	separated	by	a	
space.	

BC	Types	 Meaning	

EAN13	 Enable	decoding	of	EAN13 barcodes.	

CODE128	 Enable	decoding	of	CODE128 barcodes.	

	

QubeVu	API	Guide	 25	

CODE39	 Enable	decoding	of	CODE39 barcodes.	

CODE93	 Enable	decoding	of	CODE93 barcodes.	

EAN8	 Enable	decoding	of	EAN8 barcodes.	

UPCE	 Enable	decoding	of	UPCE	barcodes.	

UPCX	 Enable	decoding	of	UPCX	barcodes.	

INT25 Enable	decoding	of	INT25 barcodes.	

CODABAR Enable	decoding	of	CODABAR	barcodes.	

PATCHCODE Enable	decoding	of	PATCHCODE	barcodes.	

DATAMATRIX Enable	decoding	of	DATAMATRIX	barcodes.	

QR Enable	decoding	of	QR	barcodes.	

PDF417 Enable	decoding	of	PDF417 barcodes.	

5.8 System Date and time

5.8.1 Getting system time

Gets	system	time	and	date	in	specified	format.	

Method	signature:	

QVSystemTime GetSystemTime(string format)
	

format	-		Format	should	be	+sequence	as	define	here:	http://linux.die.net/man/1/date.	If	no	format	is	
provided	(i.e.	parameter	not	sent	in	POST	data	or	specified	as	empty	string),	then	+%Y%m%d%H%M%S %z
%Z	will	be	used,	which	means	YYYYMMDDHHMMSS	-0500	EST	

5.8.2 Setting system time and time zone

Sets	system	time	and	date	in	specified	format.	

Method	signature:	

QVServiceResponse SetSystemTime(string time, string timezone)
	

time	-		Time	must	use	format	YYYYMMDDHHMMSS	or	(e.g.	you	might	use	
DateTime.Now.ToString("yyyyMMddHHmmss")	to	form	the	string	you	later	send	in	C#).	

timezone	-		Time	zones	are	based	on	Ubuntu	Trusty	timezones,	e.g.	"America/New_York",	or	
“US/Eastern”.	For	a	complete	list,	please	refer	to	
http://manpages.ubuntu.com/manpages/trusty/man3/DateTime::TimeZone::Catalog.3pm.html	

	

	

QubeVu	API	Guide	 26	

6 Appendix A – Short format URLs

Many	API	calls	can	be	accessed	using	a	short	form	URL.	The	use	of	these	short	forms	are	not	
recommended	in	a	production	system	as	they	can	change	without	notice.	

Short	form	URL	(case	sensitive)	

e.g.	http://{device}/status	

Production	URL	(case	indifferent)	

e.g.	http://{device}/WebServices/QubeVuService/Status	

/status	 /Status	

Querying	real-time	device	information

/status 	

Managing	tracker	engine	lifetime	

/restart 	

/stop 	

/start 	

Troubleshooting	and	maintenance	

/log 	

/log_1 	

/extractlog 	

Querying	configuration	and	device	info	

/config 	

/options 	

/deviceinfo 	

	

Display	pages	(short	URLs	are	intended	for	production)	

Short	form	URL	(case	sensitive)	 Alternate	URL	

/display

/operatordisplay

/certified/displays/dsdisplay.php	

(weight	panel	is	shown	depending	on	SuppressScaleData	setting)	

/customerdisplay /certified/displays/dsdisplay.php?pgtype=customer	

(weight	panel	is	shown	depending	on	SuppressScaleData	setting)	

/dimonlydisplay /certified/displays/dsdisplay.php?pgtype=dimonly	

/certified/displays/dsdisplay.php?pgtype=dimonlyoperator	

/dimandweightdisplay /certified/displays/dsdisplay.php?pgtype=dimandweight	

/certified/displays/dsdisplay.php?pgtype=dimandweightoperator	

	

QubeVu	API	Guide	 27	

/dimonlycustomerdisplay /certified/displays/dsdisplay.php?pgtype=dimonlycustomer	

/dimonlyoperatordisplay /certified/displays/dsdisplay.php?pgtype=dimonlyoperator	

/dimandweightcustomerdisplay /certified/displays/dsdisplay.php?pgtype=dimandweightcustomer	

/dimandweightoperatordisplay /certified/displays/dsdisplay.php?pgtype=dimandweightoperator	

	

	

QubeVu	API	Guide	 28	

7 Appendix B – Sample .Net client code

This	appendix	contains	the	source	code	for	a	C#	class	the	uses	the	API	defined	above	for	testing	
purposes.	Sample	code	in	other	languages	such	as	Java,	JavaScript	are	also	available	upon	request.	

1) Create	new	project	

• Create	new	Console	Application	project	and	name	it	Dim101_cs	

2) Add	references	

• Add	System.EnterpriseServices	reference	

• Add	System.Web.Services	reference	

3) Add	web	service	client	proxy	

• Add	QubeVuServiceHttpPostClient.cs	to	project	

4) Add	sample	code	

• Paste	following	code	into	Program.cs	

	
/*
 * QubeVu Dimensioning Sample Code #1
 *
 * Include QubeVuServiceHttpPostClient.cs in the project.
 *
 * The following references are required by QubeVuServiceHttpPostClient.cs:
 * System.EnterpriseServices
 * System.Web.Services
 * System.Xml
 *
 */
using System;

using QubeVuWebService; // needed for QubeVuService class -
 defined in QubeVuServiceHttpPostClient.cs

namespace Dim101_cs
{
 class Program
 {
 static void Main(string[] args)
 {
 // * modify this line below * - replace default IP address of QubeVu with your own unit's IP
 string qubeVuHost = "169.254.1.1";

 QubeVuService qubeVuService;

 //
 // construct web service url using specified hostname
 //
 if (args.Length > 0) { qubeVuHost = args[0]; }
 string webServiceUrl = "http://" + qubeVuHost + "/WebServices/QubeVuService";
 Console.WriteLine("Connecting to {0} ...", webServiceUrl);

 //
 // create an instance of the QubeVu service
 //
 qubeVuService = new QubeVuService();

	

QubeVu	API	Guide	 29	

 //
 // set web service parameters: url, timeout
 //
 qubeVuService.Url = webServiceUrl;
 qubeVuService.Timeout = 1000;

 //
 // request status from QubeVu
 //
 QVStatus qvStatus = qubeVuService.Status();
 Console.WriteLine("Connection successful");

 //
 // show status
 //
 Console.WriteLine("Status: {0} Capture Id: {1} Ex status: {2}",
 qvStatus.Status, qvStatus.CaptureId, qvStatus.ExtendedStatus);

 // show dims and tracker image url if available
 if (qvStatus.Status == "IMAGING" || qvStatus.Status == "REMOVE")
 {
 Console.WriteLine("Dimensions: {0} x {1} x {2} ({3})", qvStatus.CapturedData.Dimensions.Length,
 qvStatus.CapturedData.Dimensions.Width,
 qvStatus.CapturedData.Dimensions.Height
,
 qvStatus.CapturedData.Dimensions.DimUni
t);
 Console.WriteLine("Tracker image: {0}", qvStatus.CapturedData.TrackerImage.Url);
 }

 // show image url from high resolution camera if available
 if (qvStatus.Status == "REMOVE")
 {
 if (qvStatus.CapturedData.HighResImages != null && qvStatus.CapturedData.HighResImages.Length >
 0)
 {
 Console.WriteLine("High res image: {0}", qvStatus.CapturedData.HighResImages[0].Url);
 }
 }

 Console.WriteLine("\n\nPress any key to terminate");
 Console.ReadKey(true);
 }
 }
}
	

	

QubeVu	API	Guide	 30	

8 Appendix C – C# .Net code samples

Sample	projects	were	created	using	Visual	Studio	2010	and	they	target	.NET	Framework	4	Client	Profile.	
These	samples	should	work	fine	with	lower	versions	of	Visual	Studio	and	.NET	Framework	as	well.		

Samples	take	advantage	of	the	QubeVuService	proxy	class.	The	source	code	for	this	class	is	provided,	but	
it	can	also	be	generated	automatically	based	on	the	WSDL	file	for	QubeVuService	(in	
SDK_root\wsdl\QubeVuService.wsdl)	using	the	wsdl.exe	tool.	The	wsdl.exe	tool	is	part	of	most	recent	
versions	of	Visual	Studio	installations.	

Most	sample	projects	assume	that	the	device	is	running	at	169.254.1.1	IP	address.	

8.1 Dim101

Basic	demo.	Connects	to	QubeVu,	polls	for	status	once,	displays	dimensions,	image	URLs.	(Same	as	
Appendix	A.)	

8.2 Dim102

Expands	on	the	previous	project	by	adding	extended	status	monitoring,	reports	capture	id,	and	capture	
definition	name.	Infinite	loop	polls	for	status	updates	continuously.		

8.3 Dim103

Expands	on	the	previous	project	by	adding	barcode	recognition.	This	sample	also	has	added	functionality	
for	saving	of	all	of	the	low	resolution	images,	also,	saving	the	point	coordinates	for	faces	in	wireframe	
model	of	the	scanned	object.	

8.4 Dim104

Sample	demonstrates	how	to	extract	and	save	a	rotated	and	cropped	high	resolution	image	of	the	
scanned	object.	It	retains	barcode	recognition	functionality	from	the	previous	sample,	but	does	not	save	
low	resolution	images	or	wireframe	data.	

8.5 ExternalTrigger

Demonstrates	how	to	trigger	a	scan	via	the	"Capture"	API	call.	Also	shows	how	to	create	a	capture	
definition	which	enables	barcode	recognition	on	the	device	itself	(no	need	for	barcode	recognition	
library	on	client	side).		

You	may	run	Dim102	and/or	Dim103	while	running	ExternalTrigger	at	the	same	time.	When	you	press	
any	key	to	trigger	a	scan/capture	in	ExternalTrigger	you	should	observe	the	other	windows	reporting	the	
status	of	the	device	accordingly.	

	

QubeVu	API	Guide	 31	

8.6 Barcodes

Demonstrates	the	use	of	the	QubeVuBarcodesAPI.dll	1D	barcode	recognition	library.	

8.7 Barcodes2D

Demonstrates	the	use	of	the	Postea.QubeVu2DBCRecognition.dll	2D	barcode	recognition	library.	

8.8 ImageConversion

Expands	on	Dim102	sample	project.	Retrieves	dimensions,	high	resolution	image	and	saves	it	in	both	its	
original	format	(optional)	as	well	as	a	rasterized	black	and	white	TIFF	image	for	reduced	size.	

	

	

QubeVu	API	Guide	 32	

9 Appendix D – Universal Windows Platform Sample (C#)

A	UWP	sample	project	is	included	in	the	SDK.	This	sample	project	has	been	tested	with	the	latest	
available	Windows	IoT	OS	(at	the	time	of	this	writing)	on	Raspberry	Pi	3	hardware.	Development	of	UWP	
apps	require	the	latest	Visual	Studio	2015	(Update	2	at	the	time	of	this	writing)	as	well	as	the	Windows	
10	SDK.		

The	sample	takes	advantage	of	the	QubeVuService	proxy	class	(QubeVuServiceAsyncClient.cs).	This	is	a	
different	proxy	class	than	what	is	discussed	in	the	previous	section.	The	asynchronous	C#	proxy	class	is	
available	for	use	with	Windows	Store	apps	and	Universal	Windows	Platform	development	projects	
(including,	but	not	limited	to	Windows	IoT	projects).	This	class	uses	the	newer	Windows.Web.Http	
namespace	in	favour	of	the	older	System.Net.Http	namespace,	while	also	providing	only	awaitable	
methods	for	API	calls.	This	class	must	be	used	in	conjunction	with	the	code	file	containing	all	the	
QubeVuService	type	definitions	(QubeVuServiceTypes.cs)	which	has	been	automatically	generated	from	
the	WSDL	file.	Both	files	can	be	found	in	SDK_root\common\src	folder.	

The	UWP	sample	folder	also	contains	compiled	app	packages	for	Intel	and	ARM	architectures	as	well	as	
instructions	on	how	to	sideload	the	app	on	Windows	10	desktop/table	editions.	The	README	file	has	
instructions	on	how	to	deploy	the	compiled	ARM	app	package	on	Raspberry	Pi	2/3.	

9.1 Dim101

Basic	demo.	Connects	to	QubeVu,	polls	for	status,	displays	dimensions.	

	

	

	

	

	

QubeVu	API	Guide	 33	

10 Appendix E – QubeVuBarcodes Client API

The	barcode	library	is	implemented	as	a	Windows	DLL	QubeVuBarcodesAPI.dll	(Linux	version	is	available	
on	request)	and	exposes	the	following	three	functions:	CreateReader,	DestroyReader	and	
RecognizeBarcode.	Function	signatures	and	necessary	supporting	structures	are	defined	in	
QubeVuBarcodesAPI.cs	file	in	the	SDK.	

QubeVuBarcodesAPI.dll	depends	on	libiomp5md.dll	which	is	located	in	the	<SDK	root>\common\bin	
folder.	Any	client	application	consuming	QubeVuBarcodesAPI.dll	must	have	this	dependent	library	
present	in	the	same	folder	where	the	executable	resides.	

10.1 Function Reference

CreateReader

Creates	a	new	instance	of	the	barcode	reader	engine	and	returns	a	handle	to	it.	

DestroyReader

Destroys	the	specified	reader	and	frees	any	memory	associate	with	it.	

RecognizeBarcode

Scans	the	specified	image	for	barcodes.	

	

	

QubeVu	API	Guide	 34	

11 Appendix D – Postea.QubeVu2DBCRecognition Client API

The	2D	barcode	library	is	implemented	as	a	Windows	DLL	Postea.QubeVu2DBCRecognition.dll	(Linux	
version	is	available	on	request)	and	exposes	the	BarcodeRecognizer2D	class	and	its	ReadImage	function.	
Detailed	function	signatures	and	necessary	supporting	structures	are	exposed	through	class	metadata	
which	can	be	viewed	in	Visual	Studio	IDE.	

	

11.1 Function Reference

BarcodeRecognizer2D(bcTypes2D)

Creates	a	new	instance	of	the	2D	barcode	reader	engine	and	returns	a	handle	to	it.	bcTypes2D	is	a	bit	
flag	enumeration	type	corresponding	to	the	available	types	of	2D	barcodes	the	library	supports.	Then	
the	barcode	type	parameter	is	omitted	all	available	barcode	types	will	be	recognized.	

ReadImage(Image)

Recognizes	2D	barcodes	in	the	image	passed	to	the	function.	Returns	a	collection	of	barcode	
recognitions.	

	

	

QubeVu	API	Guide	 35	

12 Appendix E – Supported barcodes

The	following	barcode	types	are	supported	by	QubeVu:	

EAN13, CODE128, CODE39, CODE93, EAN8, UPCE, UPCX, INT25, CODABAR, PATCHCODE

	

The	following	2D	barcode	types	are	supported:	

DATAMATRIX, QR, PDF417

	

QubeVu	API	Guide	 36	

13 Appendix F – ItemRect illustration

	

230 W. Coleman St. • Rice Lake, WI 54868 • USA
U.S. 800-472-6703 • Canada/Mexico 800-321-6703 • International 715-234-9171 • Europe +31 (0)26 472 1319

Rice Lake Weighing Systems is an ISO 9001 registered company.
© Rice Lake Weighing Systems Specifications subject to change without notice.

www.ricelake.com

January 12, 2017 PN 167741 Rev A

