новинка!

HOBNHKA!

MultiVent® MV.. Высокие показатели давления и объемного расхода при компактных габаритах. \dot{V} = 200 – 2 500 м³/ч

Откидные трубные вентиляторы в одноступенчатом и параллельном исполнении. 21 тип и 7 типоразмеров диаметром 100 - 315 мм. Пластиковый корпус с монтажной консолью. Серийно имеют 2 режима мощности.

InlineVent® RR, RRK.., SV.. Перемещение средних и больших объемов воздуха в условиях высокого сопротивления системы. V = 100 – 1600 м³/ч

Серия-лидер RR.., мини-вентиляторы из оцинкованной стали, устойчивого к коррозии пластика и во взрывозащищенном исполнении.
Серия RR с середины 2010 г. доступна с дополнительным энергосберегающим режимом.

Сверхплоская серия SlimVent SV.., с откидным блоком двигатель-крыльчатка. Компактное строение, идеальное решение для монтажа в подвесные потолки.

Acoustic Line SB, SVS звукоизолированная серия для систем с особыми требованиями к уровню шума. $\dot{V} = 230 - 2650 \text{ m}^3/\text{ч}$

Helios SilentBox® SB.. Практически бесшумные вентиляторы с высоким объемным расходом и давлением. Корпус выполняет функцию шумоглушителя.

SlimVent SVS. Плоские и тихие вентиляторы. Корпус имеет слой звукоизолирующей обшивки из минеральной ваты. Энергоэффектив-

ная радиальная крыльчатка в едином с двигателем откидном блоке.

Стр. 234

Трубные вентиляторы MultiVent®, Acoustic Line и плоские вентиляторы Информация о серии

Характеристики

Трубные вентиляторы Inline-Vent® и MultiVent® объединяют в себе преимущества центробежных вентиляторов и вентиляторов с осевым прохождением потока, отличаются простым и доступным принципом монтажа и имеют мощностные характеристики высокопроизводительных центробежных вентиляторов.

В пользу этих устройств говорит следующее:

- Компактность.
- Практически неограниченные возможности регулирования.
- Незначительные расходы на установку.
- Доступный по цене монтаж.
- Низкий уровень шума.
- Значительный резерв мощности.

■ Типы конструкций – обзор

□ Серия MultiVent® MV..

Высокое давление и расход при небольших размерах. От 200 до 2500 м³/ч и более 1000 Па, универсально подходят для вентиляции помещений малого и среднего размера всех типов. 21 тип стандартных диаметров от 100 до 315 мм в одно- и двухступенчатом, а также параллельном исполнении.

□ Серия RR..

Лидирующая на рынке серия с отличным соотношением ценапроизводительность. Центробежные вентиляторы малой и средней мощности стандартных размеров 100-315 мм. Отличаются прочным корпусом из оцинкованной листовой стали.

□ Серия RRK

Альтернативная серия в устойчивом к воздействию коррозии и ударопрочном пластиковом корпусе, со стандартными диаметрами 100-315 мм.

□ Серия SV...

Компактные плоские трубные вентиляторы диаметром 80 – 200 мм. Имеют энергоэффективные радиальные крыльчатки, предназначены для перемещения как небольших, так и значительных объемов воздуха.

□ Серия RRK Ex

Взрывозащищенные минивентиляторы, работающие на переменном токе напряжением 230 В. Разработаны для вентиляции химических и фармацевтических лабораторий, мастерских и т.д. Устанавливаются непосредственно в воздуховод, допущены к эксплуатации в зонах 1, 2 и 11 согласно DIN EN 60079 / VDE 0165.

Acoustic Line SB..

Helios SilentBox®, практически бесшумное решение для мощных центробежных вентиляторов, присоединяемых к стандартным воздуховодам диаметром 125-400 мм.

☐ Acoustic Line SVS

Полностью обшита звукоизолирующей минеральной ватой. Отличается особой компактностью. Идеально подходят для установки в подвесные потолки, присоединяются к стандартным воздуховодам диаметром 125 – 200 мм. Данные указания дополняют "Общие технические указания" и приводимую на страницах каталога информацию.

□ Положение при установке, монтаж, отверстие для слива конденсата

Все серии могут устанавливаться в любом положении. В типах SV., необходимо обратить внимание на расположение зоны откидывания блока двигатель-крыльчатка и обеспечить его лоступность для осмотра и сервиса. При возможности образовании конденсата (например, при прерывистой работе, перемещении среды с высокой влажностью и переменной температурой) установку необходимо проводить таким образом, чтобы конденсат мог беспрепятственно стекать вниз. Тоже самое справедливо в отношении корпуса вентилятора, в котором при необходимости нужно сделать отверстия. В типах RR.. в диске крыльчатки и корпусе двигателя предусмотрены отверстия для слива конденсата. В случае необходимости вентилятор нужно изолировать таким образом, чтобы препятствовать образованию конденса-

Распространение корпусных шумов

Необходимо препятствовать передаче корпусных шумов воздуховоду и элементам конструкции здания. Поэтому жесткое соединение вентилятра и канала недопустимо. Подходящие манжеты для крепления предлагаются в качестве дополнительных комплектующих.

□ Взрывозащищенные типы

Условия их использования и нормы указаны в разделе "Руководство по проектированию взрывозащиты". Взрывозащищенные типы RRK.. Ех соответствуют группе приборов II, категория 2G для работы в зонах 1 и 2.

□ Привод, крыльчатка

Во всех типах конструкций используются расположенные в потоке воздуха двигатели с внешним ротором, имеющие степень защиты IP 44 или IP 54. Двигатели соответствуют нормам DIN EN 60034/VDE 0530 и DIN EN 60335-1/VDE 0700 и имеют класс ISO F с дополнительной защитой от проникновения влаги. Подшипники имеют запас смазки на весь срок службы. Вентиляторы не требуют обслуживания, не генерируют радиопомех и подходят для длительной работы, в т.ч. в режиме регулирования Центробежная крыльчатка напрессована на корпус двигателя, т.е. соединена жестко вместе с ним. и динамически сбалансирована как единый блок согласно нормам DIN ISO 1940 ч.1 - класс качества 6.3.

Все вентиляторы InlineVent®, MultiVent® и Acoustic Line регулируются посредством ограничения напряжения в диапазоне мощности 0-100%. Таким образом, производительность можно согласовать с требуемым расходом практически без потерь.
В типах SVV 80 имеют помимо этого 3-ступенчатую, а типы SVR, SVS и RR (с середины

Регулирование мощности

гулирования. В серии MultiVent® возможна регулировка при помощи двухступенчатого переключателя и 5-ступенчатого трансформатора. С предлагаемыми приборами регулирования оборотов могут работать один или несколько (до достижения номинального тока) вентиляторов. При определении

2010 г.) 2-ступенчатую схему ре-

параметров необходимо предусмотреть резерв мощности в пределах 10%.

□ Направление перемещения воздуха

Направление перемещения воздуха у центробежных вентиляторов воздуха неизменно и определяется методом монтажа. Требуемое направления вращения двигателя и перемещения воздуха отмечено стрелками. Перед запуском в эксплуатацию необходима проверка.

☐ Неправильное направление вращения

Неправильное направление вращения двигателя ведет к его перегрузке и срабатыванию термоконтактов. Типичные признаки неправильного направления вращения двигателя: низкий объемный расход, вибрации, нетипичные шумы.

□ Температура рабочей среды Все вентиляторы рассчитаны на работу со средой температурой -40 °C ...+40 °C. Верхнее граничное значение индивидуально для различных типов и указано в таблице типов.

Указание

Нормы VDI 6022 допускают установку фильтров F7 и реле дифференциального давления DDS (№ 0445) в приточные вентиляционные установки.

Указание

Стр.

Указания по проектированию, акустике, взрывозащите 12 Общие технические указания, регулирование мощности 17

Трубные вентиляторы MultiVent®, Acoustic Line и плоские вентиляторы Таблица выбора

Приводимые в таблице значения повышения статического давления Δp_{f_0} , излучаемого шума и шума по воздуху со стороны впуска, представляемого

в качестве звукового давления на расстоянии 1 м в условиях свободного звукового поля облегчают процедуру выбора трубных вентиляторов.

	выпуск	Уровень шума впуск		ый расход V	′м ³ /ч в зави	исимости о	т статическ	ого давлен	RN						
Гип	Lпа дБ(A)	Lпа дБ(A)	(ΔP _{fa}), Πα		400	450	200	250	200	250	400	500	600	700	00
WV 100 A	L = 1 M 34/38	L = 1 м 45/50	0 190	50	100	150	200	250	300	350	400	500	600	700	800
IV 100 A				100	40										
	32/38	46/52	230	120	40										
IV 125	35/42	49/56 56/64	350	300	100	250	00								
IV 150	40/48		520	480	420	350	80								
IV 160	41/49	57/65	550	470	410	350	120								
IV 200	48/53	64/69	1000	930	860	770	630								
IV 250	52/58	66/72	1270	1190	1100	1010	910	760	530	340	190				
IV 315	56/63	69/76	2270	2070	1870	1680	1490	1310	1130	950	780	490			
IVP 100 B	35/41	49/55	460	230	90										
IVP 125	38/45	52/59	700	600	200										
VP 150	43/51	59/67	1040	950	840	710	160								
VP 160	44/52	60/68	1110	940	830	710	250								
IVP 200	51/56	67/72	2000	1870	1720	1540	1270								
IVP 250	55/61	69/75	2540	2380	2210	2020	1810	1520	1060	690	390				
IVZ 100 B	37/43	49/55	230	200	150	70	50								
IVZ 125	40/47	52/59	350	330	300	270	100	60							
IVZ 150	46/54	59/67	520	500	480	450	420	390	360	150	90				
IVZ 160	47/55	59/67	550	510	470	430	410	380	360	170	130				
IVZ 200	54/59	66/71	1000	970	940	900	860	820	770	720	640				
IVZ 200 IVZ 250	58/64	69/75	1270	1230	1190	1150	1110	1060	1010	970	910	770	540	350	20
IVZ 250 IVZ 315															
IVZ 313	60/68	72/79	2270	2170	2070	1790	1870	1780	1680	1590	1500	1320	1130	960	78
R 100 A	36	59	250	200	160	120	90	60	30						
R 100 C	42	63	330	290	240	190	150	100	70	20					
R 125 C	42	63	480	420	350	250	170	120	70	30					
R 160 B	42	62	530	470	380	300	240	160	100						
R 160 C	49	66	870	800	730	600	500	400	320	180					
R 200 A	47	65	930	860	790	730	630	520	390	270	140				
R 200 B	48	66	1060	990	920	840	750	640	540	420	320	120			
RR 250 A	47	67	930	850	760	690	600	490	390	260	020	.20			
RR 250 C	49	67	1130	1050	960	870	790	700	600	500	380	140			
RR 315 B	47	67	1410	1320	1220	1130	1030	920	800	670	550	260			
RR 315 C	50	68	1630	1550	1470	1390	1300	1200	1100	990	870	630	360	80	
W 212 C	30	00	1030	1550	1470	1330	1300	1200	1100	990	070	030	300	80	
RK 100	45	54	230	180	130	100	70	30							
RK 125	48	54	330	290	260	220	170	110	30						
RK 160	46	61	440	390	340	300	250	180	70						
RK 200	56	66	770	700	620	540	440	340	210	80					
RK 250	53	61	830	760	690	600	510	390	260	100					
RK 315	57	66	1270	1190	1100	1000	910	810	700	580	440	120			
RK 180 Ex	47	56	290	250	190	130	20								
RK 200 Ex	59	66	570	510	440	370	290	190	60						
RK 250 Ex	65	72	1000	890	770	650	530	410	280	80					
artic 200 EX	03	12	1000	030	110	000	330	410	200	00					
B 125 A	28	46	230	210	190	170	140	80							
B 125 C	37	55	440	410	390	360	330	290	240	110					
B 160 B	36	54		380	350	330	300	260	210	110					
B 160 D	39	58			480	440	410	370	330	290					
B 200 C	41	56		660	630	590	530	460	380	250	50				
B 200 D	42	55	820	770	730	680	630	580	530	470	420	300	130		
B 250 C	43	56				940	890	820	740	590	330				
B 250 E	44	55	1130	1060	990	920	850	770	710	640	560	410	240	60	
3 315 B	45	64	1100	1000	1910	1760	1600	1470	1250	790	000	710	270	00	
B 315 C	37	56			1450	1360	1280	1160	950	600					
					1430						600				
B 355 C B 400 F	39 46	60 61			2490	1810 2340	1650 2200	1470 2050	1260 1880	1010 1700	600 1430				
VR 125 B	42/51	52/61	430	380	340	290	240	180	110	40					
VR 160 K	37/48	50/61	460	420	380	330	270	200	130	50					
VR 200 K	47/54	59/66	830	740	670	610	560	490	410	320	210				
VS 125 B	35/44	37/46	400	360	320	280	230	180	100	20					
VS 160 K	33/44	38/48	460	420	370	320	250	190	100	10					
VS 200 K	44/51	48/55	840	770	700	640	580	510	420	290	160				
	24/26/37	25/32/43	110	100	90	80	70	60	20						
VV 80	24/20/37	23/32/43	110	100	30	00	10	00	20						

Трубные вентиляторы MultiVent®

Имеющие расход в диапазоне 200 - 2500 м³/ч и показатели давления свыше 1000 Па (в двухступенчатых исполнениях), серия Helios MultiVent® идеально подходит для вентиляции небольших и средних помещений всех типов.

Особое преимущество вентиляторов этой серии – их компактность.

Размеры корпуса устройств этой серии ненамного больше диаметра воздуховода. Монтаж возможен в любом положении – горизонтальном, вертикальном или под наклоном.

Монтаж непосредственно в воздуховод. Прежде всего в условиях ограниченного пространства, например, под подвесным потолком: установка Helios MultiVent® экономит место и силы.

Клеммная коробка с блоком вентилятора поворачивается в любом направлении. Это позволяет с легкостью обходить любые препятствия.

Ревизии или чистка? С MultiVent® это не проблема! Поднять защелку, вынуть вентилятор. Все компоненты открыты!

Трубные вентиляторы MultiVent®. Компактный корпус равен диаметру воздуховода

Трубные вентиляторы MultiVent®

В компактном корпусе вентилятора MultiVent® находится сверхмощная крыльчатка со спрямляющими лопатками, обеспечивающая высокое давление и расход воздуха. Вентиляторы серийно имеют 2 ступени мощности и имеют возможность плавного регулирования мощности

Корпус с консолью может монтироваться в любом положении, вентиляторный блок с клеммной коробкой может быть повернут в любую сторону. Вентиляторный блок легко извлекается из установки, для чего достаточно отпустить зажимной хомут. Эта новая концепция гарантирует простейший монтаж в воздуховод и облегчает ревизию и чистку. Конструкция полностью удовлетворяет требованиям норм VDI 6022.

Энергоэффективный полностью закрытый асинхронный двигатель со степенью защиты IP 44 укомплектован подшипниками, рассчитанными на срок службы более 30 000 часов. Допускается работа с загрязненной и содержащей пыль средой.

Разработаны специально для установки непосредственно в воздуховод. Могут использоваться в самых различных областях промышленности и жилом фонде.

Особенности

- Компактность и минимальные затраты на монтаж благодаря прямому прохождению потока.
- ☐ Не требует отводов.☐ Соединительные датрубки соот.
- Соединительные патрубки соответствуют стандартным диаметрам воздуховодов.
- □ В серийной комплектации имеет 2 режима мощности; имеет регулируемую скорость вращения.
- □ Возможна установка в любом положении.
- ☐ Подшипники рассчитаны на 30 000 часов работы.
- □ Беспроблемное обслуживание и чистка без демонтажа системы воздуховодов благодаря извлекаемому вентиляторному блоку.
- □ Вентиляторный блок может поворачиваться в любом направлении.
- Интегрированный монтажный кронштейн упрощает установку на потолок и стены.

■ Общие характеристики□ Корпус

Вентиляторный блок легко извлекается из корпуса после расцепления зажимного хомута. Все детали из устойчивого к коррозии ударопрочного пластика. Цвет: светло-серый.

□ Регулирование мощности

Серийно с двумя ступенями мощности при помощи внешнего выключателя MVB (комплектующие). Кроме того плавно при помощи электронного регулятора или пятиступенчатого трансформатора.

□ Двигатель

Закрытый укомплектованный подшипниками двигатель, имеющий защиту от проникновения влаги, класс изоляции F, для длительной работы, не требует обслуживания и не генерирует радиопомех.

Защита двигателя

Встроенный в обмотку двигателя предохранитель, препятствующий перегреву устройства.

□ Ш∨м

См. описание на стр. 223.

MV – одноступенчатый

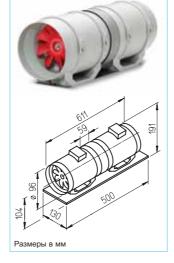
Откидной трубный вентилятор, монтируемый непосредственно в воздуховод.

■ Описание MV

□ Крыльчатка

Оптимизирована для обеспечения высоких показателей давления и расхода, изготовлена из высококачественного пластика.

□ Электрическое подключение


Просторная клеммная коробка (IP 44) расположенная снаружи на корпусе; может поворачиваться в любом направлении.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

MVZ – двухступенчатый

Для достижения высоких показателей давления: два вентилятора установлены один за другим.

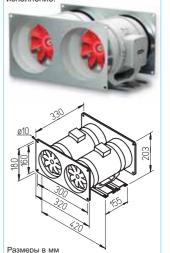
■ Описание MVZ

Два расположенных один за другим вентилятора МV, соединенных при помощи муфты и смонтированных на одной монтажной плите. При последное рабочее давление увеличивается практически вдвое. Поставляется в виде готового к монтажу комплекта.

□ Крыльчатка

См. описание слева.

□ Электрическое подключение


Каждый вентилятор снабжен отдельной клеммной коробкой снаружи на корпусе. При управлении работой двух вентиляторов на 2 ступени мощности при помощи <u>одного</u> рабочего переключателя МVВ (комплектующие) или <u>одного</u> перекидного выключателя требуется соответствующая схем подключения соединительных реле. При использовании регулятора скорости вращения подключение осуществляется к большей ступени мощности.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

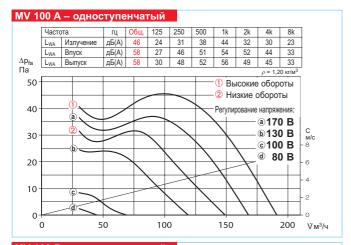
MVP – параллельный

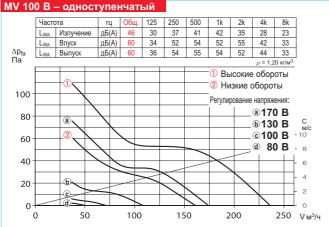
Для достижения высокого объемного расхода. Компактное параллельное исполнение.

■ Описание MVP

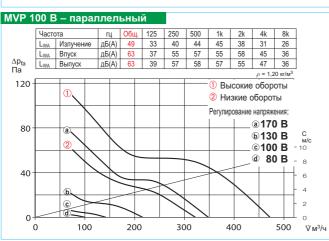
Два расположенных параллельно вентилятора MV, соединенных на впуске и выпуске прямоугольной платой для подключения к каналу и прикрученных к монтажной шине. Поставляется в виде готового к монтажу комплекта. При параллельной работе (совместное управление) расход воздуха увеличивается вдвое.

□ Крыльчатка


См. описание слева.


□ Электрическое подключение

Тип	Nº	Диаметр подключения	Расход, мин./ макс.	Скорость вращения мин./макс.			Потребл. мощность мин./макс.	Потребл. тока мин./макс.	Подключение согласно схеме	Макс. темп. рабочей среды	Bec	Трансформат 5-ступенчатый р скорости вра	егулятор	Электронный* бесступенчатый регулятор скрытый/открытый монтаж
		MM	V м³/ч	об/мин	дБ(А)	дБ(А)	Вт	Α	Nº	+ °C	КГ	Тип	Nº	Tun №
Одноступен	чатый тру	бный венти.	лятор, 230 Е	3, 50 гц, конд	ценсаторны	й двигатель	, IP 44							
MV 100 A	6050	100	150/190	2070/2620	34/38	45/50	12/15	0,05/0,07	844.1	60	1,2	TSW 0,3	3608	ESU 1/ESA 1 0236/0238
MV 100 B	6051	100	170/240	1590/2170	32/38	46/52	20/23	0,09/0,11	844.1	60	1,7	TSW 0,3	3608	ESU 1/ESA 1 0236/0238
Двухступен	чатый вен	тиляторный	блок, 230 Е	3, 50 гц, конд	енсаторныі	й двигатель	, IP 44							
MVZ 100 B	6058	100	170/240	1590/2170	37/43	49/55	40/46	0,18/0,22	845.1	60	4,5	TSW 0,3	3608	ESU 1/ESA 1 0236/0238
Спаренный	вентилято	рный блок,	230 В, 50 гц	, конденсато	рный двига	атель, ІР 44								
MVP 100 B	6065	_	340/480	1590/2170	35/41	49/55	40/46	0.18/0.22	845.1	60	5.7	TSW 0.3	3608	ESU 1/ESA 1 0236/0238


^{*} Для минимизации уровня шума рекомендуется использовать трансформаторные регуляторы. Электронное управление посредством сдвигом фазы может быть причиной ощутимого гула.

MVZ 100 В – двухступенчатый Общ. 125 250 500 Частота L_{WA} Излучение дБ(A) 51 37 42 46 47 43 33 25 Впуск 57 47 лБ(А) 40 56 58 55 43 57 59 57 54 49 L_{WA} Выпуск дБ(А) Высокие обороты 2 Низкие обороты 200 @170 B 160 130 В ©100 B 120 @ 80 B 8 80 6 (b) 40 50 100 150 200 250 У́м³/ч

■ Комплектующие к MV и MVZ

Гибкая соединительная манжета Тип FM 100

В комплект входит 2 хомута. Для монтажа между вентилятором и системой воздуховодов, препятствует передаче вибраций и компенсирует допуски при монтаже. Для установки на впуске и выпуске необходимо 2 штуки.

Клапан с возвратной пружиной, устанавливаемый на выпускной патрубок. Изготавливается из пластика белого пвета

Для установки в круглые вентиляционные выходы. Изготавливается из ударопрочного пластика белого цвета.

Защитная решетка

Тип MVS 100 № 6071

Предназначена для монтажа на впускном и выпускном патрубке вентилятора.

Гибкий шумоглушитель Тип FSD 100 № 0676

Алюминиевая труба с соединительными патрубками с обеих сторон. Шумоизолирующие пакеты толщиной 50 мм. Длина 1 м.

Фильтр-бокс

LFBR 100 G4 № 8576

Воздушный фильтр большой площади, монтаж в воздуховод.

Электрокалорифер

EHR-R 0,4/100 0,4 кВт № 8708 Трубчатый корпус, оцинкованная сталь.

Водяной калорифер

Тип WHR 100

№ 9479 Монтаж в воздуховод.

Комплектующие ко всем типам

Обратный клапан

Тип RSKK 100 № 5106

С обратной пружиной, пластик. Установка в воздуховод.

Рабочий выключатель 0-1-2 Тип MVB № 6091

С функциями вкл./выкл., низкие и высокие обороты.

Трансформаторный регулятор скорости вращения

Тип TSW см. таблицу типов

5-ступенчатый, открытый монтаж.

Электронный регулятор скорости вращения

Тип ESU/ESA см. таблицу типов Открытый/скрытый монтаж.

Электронный выключатель с функцией задержки отключения Тип ZNE № 0342

Плавно регулируемое время задержки отключения.

Разработаны специально для установки непосредственно в воздуховод. Могут использоваться в самых различных областях промышленности и жилом фонде.

Особенности

- Компактность и минимальные затраты на монтаж благодаря прямому прохождению потока.
- □ Не требует отводов.
- Соединительные патрубки соответствуют стандартным диаметрам воздуховодов.
- □ В серийной комплектации имеет 2 режима мощности; имеет регулируемую скорость вращения.
- Возможна установка в любом положении.
- ☐ Подшипники рассчитаны на 30 000 часов работы.
- □ Беспроблемное обслуживание и чистка без демонтажа системы воздуховодов благодаря извлекаемому вентиляторному блоку.
- □ Вентиляторный блок может поворачиваться в любом направлении.
- Интегрированный монтажный кронштейн упрощает установку на потолок и стены.

■ Общие характеристики□ Корпус

Вентиляторный блок легко извлекается из корпуса после расцепления зажимного хомута. Все детали из устойчивого к коррозии ударопрочного пластика. Цвет: светло-серый.

□ Регулирование мощности

Серийно с двумя ступенями мощности при помощи внешнего выключателя МVВ (комплектующие). Кроме того плавно при помощи электронного регулятора или пятиступенчатого трансформатора.

□ Двигатель


Закрытый укомплектованный подшипниками двигатель, имеющий защиту от проникновения влаги, класс изоляции F, для длительной работы, не требует обслуживания и не генерирует радиопомех.

□ Защита двигателя

Встроенный в обмотку двигателя предохранитель, препятствующий перегреву устройства.

MV – одноступенчатый

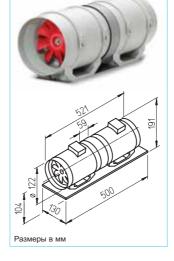
Откидной трубный вентилятор, монтируемый непосредственно в воздуховод.

■ Описание MV

Крыльчатка

Оптимизирована для обеспечения высоких показателей давления и расхода, изготовлена из высококачественного пластика.

□ Электрическое подключение


Просторная клеммная коробка (IP 44) расположенная снаружи на корпусе; может поворачиваться в любом направлении.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помешения.

MVZ – двухступенчатый

Для достижения высоких показателей давления: два вентилятора установлены один за другим.

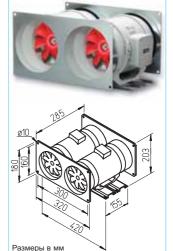
■ Описание MVZ

Два расположенных один за другим вентилятора МV, соединенных при помощи муфты и смонтированных на одной монтажной плите. При последовательной работе рабочее давление увеличивается практически вдвое. Поставляется в виде готового к монтажу комплекта.

□ Крыльчатка

См. описание слева.

□ Электрическое подключение


Каждый вентилятор снабжен отдельной клеммной коробкой снаружи на корпусе. При управлении работой двух вентиляторов на 2 ступени мощности при помощи <u>одного</u> рабочего переключателя МVВ (комплектующие) или <u>одного</u> перекидного выключателя требуется соответствующая схема подключения соединительных реле. При использовании регулятора скорости вращения подключение осуществляется к большей ступени мощности.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

MVP – параллельный

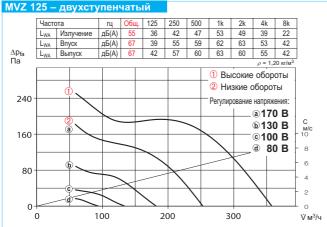
Для достижения высокого объемного расхода. Компактное параллельное исполнение.

■ Описание MVP

Два расположенных параллельно вентилятора MV, соединенных на впуске и выпуске прямоугольной платой для подключения к каналу и прикрученных к монтажной шине. Поставляется в виде готового к монтажу комплекта. При параллельной работе (совместное управление) расход воздуха увеличивается вдвое.

□ Крыльчатка

См. описание слева.


□ Электрическое подключение

Тип	Nº	Диаметр подключения	Расход, мин./ макс.	Скорость вращения мин./макс.	Уровень и Излучение через корпус		Потребл. мощность мин./макс.	Потребл. тока мин./макс.	Подключение согласно схеме	Макс. темп. рабочей среды	Bec	Трансформаторы 5-ступенчатый регул скорости вращен	ятор	Электронный* бесступенчатый регулятор скрытый/открытый монтаж
		MM	V м³/ч	об/мин	дБ(А)	дБ(А)	Вт	Α	Nº	+ °C	КГ	Тип	Nº	Tuπ №
Одноступен	чатый тру	бный венти	лятор, 230 Е	3, 50 гц, конд	ценсаторны	й двигатель	, IP 44							
MV 125	6052	125	250/360	1670/2300	35/42	49/56	25/33	0,11/0,15	844.1	60	1,7	TSW 0,3 3	806	ESU 1/ESA 1 0236/0238
Двухступен	чатый вен	тиляторный	блок, 230 Е	3, 50 гц, конд	енсаторныі	й двигатель	, IP 44							
MVZ 125	6059	125	250/360	1670/2300	40/47	52/59	50/66	0,22/0,30	845.1	60	4,6	TSW 0,3 3	806	ESU 1/ESA 1 0236/0238
Спаренный	вентилято	рный блок,	230 В, 50 гц	, конденсато	орный двига	атель, ІР 44								
MVP 125	6066	-	500/720	1670/2300	38/45	52/59	50/66	0,22/0,30	845.1	60	5,8	TSW 0,3 3	806	ESU 1/ESA 1 0236/0238

^{*} Для минимизации уровня шума рекомендуется использовать трансформаторные регуляторы. Электронное управление посредством сдвигом фазы может быть причиной ощутимого гула.

MVP 1	25 –	паралл	ельн	ый								
	Часто	та	гц	Общ.	. 125	250	500) 1k	2k	4k	8k	7
	L _{WA}	Излучение	дБ(А)	53	33	39	45	51	44	37	30	1
	L _{WA}	Впуск	дБ(А)	67	36	54	58	61	64	51	43	
∆р _{fа} Па	L _{WA}	Выпуск	дБ(А)	67	38	56	59	63	61	53	42	
Ha										ρ = 1,2	0 кг/м ³	,
								_ 1 Вь	сокие	обор	оты	
		1						2 Ни	зкие с	оборот	ГЫ	
120 -				\top				— Регулир	ование	напряж	ения:	
				\rightarrow			_		<u> </u>	@17() B	С
		a 🔍	_	\dashv			egthinspace = egt			⊕13 () B	M/C
80-			$\overline{}$	\neg				$\overline{}$		©100) B	- 10
				\rightarrow	_			\rightarrow	L_	@ 8() B	- 8
40		6										- 6
40-						1						- 4
		C C			_	<u> </u>				\vee		- 2
0-			\rightarrow			-			-			Ι ο
()	2	00		4	00		6	00			У м³/ч

■ Шум

Над графиками характеристик приведены суммарный уровень и спектр

- Звуковой мощности излучения через корпус.
- Звуковой мощности на впуске/выпуске в дБ (А).
 В таблице типов (см. левую страницу) дополнительно приведены:
- Излучение шума и шум по воздуху на впуске/выпуске как звуковое давление на расстоянии 1 м (свободное звуковое поле).

При сравнении с данными звукового давления на расстоянии 3 м, необходимо уменьшить приводимое значение на 8 дБ(A).

Комплектующие Стр.

Фильтры, калориферы, шумоглушители 299 Системы регулирования температуры калориферов 305, 309 Гибкие воздуховоды, вентиляционные решетки, фасонные элементы, Проходы сквозь крышу 345 Тарельчатые клапаны 364 Регуляторы скорости вращения, переключатели 381

■ Комплектующие к MV и MVZ

Гибкая соединительная манжета Тип FM 125 № 1682

В комплект входит 2 хомута. Для монтажа между вентилятором и системой воздуховодов, препятствует передаче вибраций и компенсирует допуски при монтаже. Для установки на впуске и выпуске необходимо 2 штуки.

Внешний обратный клапан Тип VK 125 № 0857

Клапан с возвратной пружиной, устанавливаемый на выпускной патрубок. Изготавливается из пластика белого цвета.

Внешняя защитная решетка Тип G 125 № 0893

Для установки в круглые вентиляционные выходы. Изготавливается из ударопрочного пластика белого цвета.

Защитная решетка

Тип MVS 125 № 6072

Предназначена для монтажа на впускном и выпускном патрубке вентилятора.

Гибкий шумоглушитель Тип FSD 125 № 0677

Алюминиевая труба с соединительными патрубками с обеих сторон. Шумоизолирующие пакеты толщиной 50 мм. Длина 1 м.

Фильтр-бокс

LFBR 125 G4 № 8577

Воздушный фильтр большой площади, монтаж в воздуховод.

Электрокалорифер

EHR-R 0,8/125 0,8 кВт № 8709 Трубчатый корпус, оцинкованная сталь.

Водяной калорифер

Тип WHR 125 № 9480 Монтаж в воздуховод.

■ Комплектующие ко всем типам

Обратный клапан

Тип RSKK 125 № 5107

С обратной пружиной, пластик. Установка в воздуховод.

Рабочий выключатель 0-1-2 Тип МVB № 6091

С функциями вкл./выкл., низкие и высокие обороты.

Трансформаторный регулятор скорости вращения

Тип TSW см. таблицу типов 5-ступенчатый, открытый монтаж.

Электронный регулятор скорости вращения

Тип ESU/ESA см. таблицу типов Открытый/скрытый монтаж. Электронный выключатель с функцией задержки отключения Тип ZNE № 0342

Плавно регулируемое время задержки отключения.

Разработаны специально для установки непосредственно в воздуховод. Могут использоваться в самых различных областях промышленности и жилом фонде.

Особенности

- Компактность и минимальные затраты на монтаж благодаря прямому прохождению потока.
- ☐ Не требует отводов.☐ Соединительные датрубки соотв
- Соединительные патрубки соответствуют стандартным диаметрам воздуховодов.
- □ В серийной комплектации имеет 2 режима мощности; имеет регулируемую скорость вращения.
- □ Возможна установка в любом положении.
- ☐ Подшипники рассчитаны на 30 000 часов работы.
- □ Беспроблемное обслуживание и чистка без демонтажа системы воздуховодов благодаря извлекаемому вентиляторному блоку.
- Вентиляторный блок может поворачиваться в любом направлении.
- Интегрированный монтажный кронштейн упрощает установку на потолок и стены.

■ Общие характеристики□ Корпус

Вентиляторный блок легко извлекается из корпуса после расцепления зажимного хомута. Все детали из устойчивого к коррозии ударопрочного пластика. Цвет: светло-серый.

□ Регулирование мощности

Серийно с двумя ступенями мощности при помощи внешнего выключателя МVВ (комплектующие). Кроме того плавно при помощи электронного регулятора или пятиступенчатого трансформатора.

Двигатель


Закрытый укомплектованный подшипниками двигатель, имеющий защиту от проникновения влаги, класс изоляции F, для длительной работы, не требует обслуживания и не генерирует радиопомех.

□ Защита двигателя

Встроенный в обмотку двигателя предохранитель, препятствующий перегреву устройства.

MV – одноступенчатый

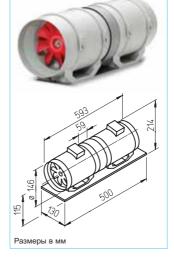
Откидной трубный вентилятор, монтируемый непосредственно в воздуховод.

■ Описание MV

Крыльчатка

Оптимизирована для обеспечения высоких показателей давления и расхода, изготовлена из высококачественного пластика.

□ Электрическое подключение


Просторная клеммная коробка (IP 44) расположенная снаружи на корпусе; может поворачиваться в любом направлении.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помешения.

MVZ – двухступенчатый

Для достижения высоких показателей давления: два вентилятора установлены один за другим.

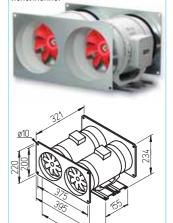
■ Описание MVZ

Два расположенных один за другим вентилятора МV, соединенных при помощи муфты и смонтированных на одной монтажной плите. При последное рабочее давление увеличивается практически вдвое. Поставляется в виде готового к монтажу комплекта.

□ Крыльчатка

См. описание слева.

□ Электрическое подключение


Каждый вентилятор снабжен отдельной клеммной коробкой снаружи на корпусе. При управлении работой двух вентиляторов на 2 ступени мощности при помощи <u>одного</u> рабочего переключателя МVВ (комплектующие) или <u>одного</u> перекидного выключателя требуется соответствующая схема подключения соединительных реле. При использовании регулятора скорости вращения подключение осуществляется к большей ступени мощности.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

MVP – параллельный

Для достижения высокого объемного расхода. Компактное параллельное исполнение.

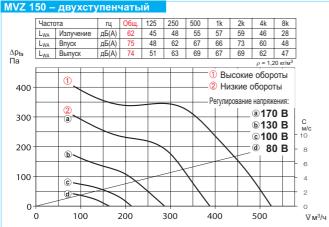
■ Описание MVP

Размеры в мм

Два расположенных параллельно вентилятора MV, соединенных на впуске и выпуске прямоугольной платой для подключения к каналу и прикрученных к монтажной шине. Поставляется в виде готового к монтажу комплекта. При параллельной работе (совместное управление) расход воздуха увеличивается вдвое.

Крыльчатка

См. описание слева.


□ Электрическое подключение

Тип	Nº	Диаметр подключения	Расход, мин./ макс.	Скорость вращения мин./макс.	Уровень ц Излучение через корпус	По воздуху	Потребл. мощность мин./макс.	Потребл. тока мин./макс.	Подключение согласно схеме	Макс. темп. рабочей среды	Bec	Трансформат 5-ступенчатый р скорости вра	егулятор	Электронный* бесступенчатый регулятор скрытый/открытый монтаж
		MM	У м³/ч	об/мин	дБ(А)	дБ(А)	Вт	Α	Nº	+ °C	КГ	Тип	Nº	Тип №
Одноступен	чатый тру	бный венти	лятор, 230 Е	3, 50 гц, конд	ценсаторныі	й двигатель	, IP 44							
MV 150	6053	150	380/520	1520/2290	40/48	56/64	40/58	0,18/0,26	844.1	60	2,3	TSW 0,3	3608	ESU 1/ESA 1 0236/0238
Двухступен	чатый вен	тиляторный	блок, 230 Е	3, 50 гц, конд	енсаторный	і двигатель	, IP 44							
MVZ 150	6060	150	380/520	1520/2290	46/54	59/67	80/116	0,36/0,52	845.1	60	5,8	TSW 1,5	1495	ESU 1/ESA 1 0236/0238
Спаренный	вентилято	рный блок,	230 В, 50 гц	, конденсат	орный двига	атель, IP 44								
MVP 150	6067	-	760/1040	1520/2290	43/51	59/67	80/116	0,36/0,52	845.1	60	8,0	TSW 1,5	1495	ESU 1/ESA 1 0236/0238

^{*} Для минимизации уровня шума рекомендуется использовать трансформаторные регуляторы. Электронное управление посредством сдвигом фазы может быть причиной ощутимого гула.

MVP 1	5 0 –	паралл	ельн	ый								
	Часто	та	гц	Общ.	125	250	500	1k	2k	4k	8k	1
	L _{WA}	Излучение	дБ(А)	59	42	46	53	55	54	44	28]
	L _{WA}	Впуск	дБ(А)	75	45	61	66	65	74	58	48]
Δp_{fa}	L _{WA}	Выпуск	дБ(А)	74	47	63	68	67	71	60	48	
Па										ρ = 1,2	0 кг/м ³	,
		1)						① Bb	сокие	обор	ОТЫ	
200 -		10		-	+	_		2 Hv	зкие (оборо	ТЫ	
								Регупи	าดหลายค	напряж	ъниа.	
		2		\vdash		$\overline{}$				a 170		ı
150 -		(a)					\wedge			_		С
										6 130		M/C
400			_	$\overline{}$	+					©100		- 10
100 -		(b)_				egthanking				@ 80	0 B	- 8
		<u> </u>	\leftarrow	+	+-	+		_	$\overline{}$	_	_	- 6
50-				\downarrow		-			\perp			- 4
30		©		+	J		/			\setminus		4
		0><	$\overline{}$		\setminus					\wedge		- 2
0-		1 1	$\overline{}$	\		+		+		+		Lo
(0	200	4	100		500		300	1	000		У м³/ч

■ Ш∨м

Над графиками характеристик приведены суммарный уровень и спектр

- Звуковой мощности излучения через корпус.
- В зауковой мощности на впуске/выпуске в дБ (A). В таблице типов (см. левую страницу) дополнительно приведены:
- Излучение шума и шум по воздуху на впуске/выпуске как звуковое давление на расстоянии 1 м (свободное звуковое поле).

При сравнении с данными звукового давления на расстоянии 3 м, необходимо уменьшить приводимое значение на 8 дБ(A).

Комплектующие Стр.

Фильтры, калориферы, шумоглушители 299 Системы регулирования температуры калориферов 305, 309 Гибкие воздуховоды, вентиляционные решетки, фасонные элементы, Проходы сквозь крышу 345 Тарельчатые клапаны 364 Регуляторы скорости вращения, переключатели 381

■ Комплектующие к MV и MVZ

Гибкая соединительная манжета Тип FM 150 № 1683

В комплект входит 2 хомута. Для монтажа между вентилятором и системой воздуховодов, препятствует передаче вибраций и компенсирует допуски при монтаже. Для установки на впуске и выпуске необходимо 2 штуки.

Внешний обратный клапан Тип VK 160 № 0892

Клапан с возвратной пружиной, устанавливаемый на выпускной патрубок. Изготавливается из пластика белого цвета.

Внешняя защитная решетка Тип G 160 № 0893

Для установки в круглые вентиляционные выходы. Изготавливается из ударопрочного пластика белого цвета.

Защитная решетка

Тип MVS 150 № 6073

Предназначена для монтажа на впускном и выпускном патрубке вентилятора.

Гибкий шумоглушитель Тип FSD 160 ¹) № 0678

Алюминиевая труба с соединительными патрубками с обеих сторон. Шумоизолирующие пакеты толщиной 50 мм. Длина 1 м.

Фильтр-бокс

LFBR 160 G4¹) № 8578

Воздушный фильтр большой площади, монтаж в воздуховод.

Электрокалорифер

EHR-R 1,2/160 ¹) 1,2 kBT №9434

Трубчатый корпус, оцинкованная сталь.

Водяной калорифер

Тип WHR 160 № 9481

Монтаж в воздуховод.

■ Комплектующие ко всем типам

Обратный клапан

Тип RSKK 150 № 5173

С обратной пружиной, из металла. Установка в воздуховод.

Рабочий выключатель 0-1-2 Тип МVB № 6091

С функциями вкл./выкл., низкие и высокие обороты.

Трансформаторный регулятор скорости вращения

Тип TSW см. таблицу типов 5-ступенчатый, открытый монтаж.

Электронный регулятор скорости Тип ESU/ESA см. таблицу типов Открытый/скрытый монтаж.

Электронный выключатель с функцией задержки отключения Тип ZNE № 0342

Плавно регулируемое время задержки отключения.

¹⁾ Комплектующие Ø 160 мм применяются для воздуховодов Ø 150 мм при заполенении при монтаже зазора пенистой резиной.

Разработаны специально для установки непосредственно в воздуховод. Могут использоваться в самых различных областях промышленности и жилом фонде.

Особенности

- Компактность и минимальные затраты на монтаж благодаря прямому прохождению потока.
- ☐ Не требует отводов.☐ Соединительные патрубки соответ-
- Соединительные патрубки соответствуют стандартным диаметрам воздуховодов.
- □ В серийной комплектации имеет 2 режима мощности; имеет регулируемую скорость вращения.
- □ Возможна установка в любом положении.
- □ Подшипники рассчитаны на 30 000 часов работы.
- □ Беспроблемное обслуживание и чистка без демонтажа системы воздуховодов благодаря извлекаемому вентиляторному блоку.
- □ Вентиляторный блок может поворачиваться в любом направлении.
- Интегрированный монтажный кронштейн упрощает установку на потолок и стены.

■ Общие характеристики□ Корпус

Вентиляторный блок легко извлекается из корпуса после расцепления зажимного хомута. Все детали из устойчивого к коррозии ударопрочного пластика. Цвет: светло-серый.

□ Регулирование мощности

Серийно с двумя ступенями мощности при помощи внешнего выключателя МVВ (комплектующие). Кроме того плавно при помощи электронного регулятора или пятиступенчатого трансформатора.

□ Двигатель


Закрытый укомплектованный подшипниками двигатель, имеющий защиту от проникновения влаги, класс изоляции F, для длительной работы, не требует обслуживания и не генерирует радиопомех.

□ Защита двигателя

Встроенный в обмотку двигателя предохранитель, препятствующий перегреву устройства.

MV – одноступенчатый

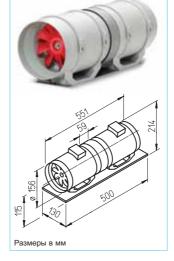
Откидной трубный вентилятор, монтируемый непосредственно в воздуховод.

■ Описание MV

Крыльчатка

Оптимизирована для обеспечения высоких показателей давления и расхода, изготовлена из высококачественного пластика.

□ Электрическое подключение


Просторная клеммная коробка (IP 44) расположенная снаружи на корпусе; может поворачиваться в любом направлении.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помешения.

MVZ – двухступенчатый

Для достижения высоких показателей давления: два вентилятора установлены один за другим.

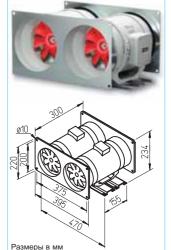
■ Описание MVZ

Два расположенных один за другим вентилятора МV, соединенных при помощи муфты и смонтированных на одной монтажной плите. При последовательной работе рабочее давление увеличивается практически вдвое. Поставляется в виде готового к монтажу комплекта.

□ Крыльчатка

См. описание слева.

□ Электрическое подключение


Каждый вентилятор снабжен отдельной клеммной коробкой снаружи на корпусе. При управлении работой двух вентиляторов на 2 ступени мощности при помощи <u>одного</u> рабочего переключателя МVВ (комплектующие) или <u>одного</u> перекидного выключателя требуется соответствующая схема подключения соединительных реле. При использовании регулятора скорости вращения подключение осуществляется к большей ступени мощности.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

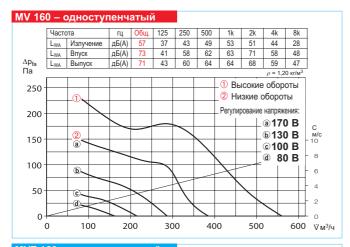
MVP – параллельный

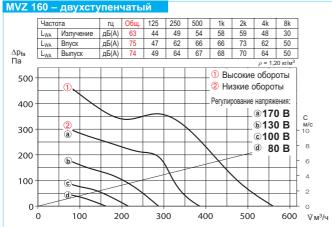
Для достижения высокого объемного расхода. Компактное параллельное исполнение.

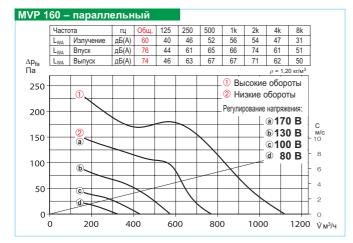
■ Описание MVP

Два расположенных параллельно вентилятора MV, соединенных на впуске и выпуске прямоугольной платой для подключения к каналу и прикрученных к монтажной шине. Поставляется в виде готового к монтажу комплекта. При параллельной работе (совместное управление) расход воздуха увеличивается вдвое.

□ Крыльчатка


См. описание слева.


□ Электрическое подключение


Тип	Nº	Диаметр подключения	Расход, мин./ макс.	Скорость вращения мин./макс.	Уровень ц Излучение через корпус	По воздуху	Потребл. мощность мин./макс.	Потребл. тока мин./макс.	Подключение согласно схеме	Макс. темп. рабочей среды	Bec	Трансформато 5-ступенчатый ре скорости враш	тулятор	Электронный* бесступенчатый регулятор скрытый/открытый монтаж
		MM	V м³/ч	об/мин	дБ(А)	дБ(А)	Вт	Α	Nº	+ °C	КГ	Тип	Nº	Тип №
Одноступен	чатый тру	бный венти	лятор, 230 Е	3, 50 гц, конд	денсаторныі	й двигатель	, IP 44							
MV 160	6054	160	390/550	1520/2290	41/49	57/65	40/58	0,18/0,26	844.1	60	2,3	TSW 0,3	3608	ESU 1/ESA 1 0236/0238
Двухступен	чатый вен	тиляторный	блок, 230 Е	3, 50 гц, конд	ценсаторный	і двигатель	, IP 44							
MVZ 160	6061	160	390/550	1520/2290	47/55	59/67	80/116	0,36/0,52	845.1	60	5,8	TSW 1,5	1495	ESU 1/ESA 1 0236/0238
Спаренный	вентилят	рный блок,	230 В, 50 гц	, конденсат	орный двига	атель, ІР 44								
MVP 160	6068	-	780/1100	1520/2290	44/52	60/68	80/116	0,36/0,52	845.1	60	7,7	TSW 1,5	1495	ESU 1/ESA 1 0236/0238

^{*} Для минимизации уровня шума рекомендуется использовать трансформаторные регуляторы. Электронное управление посредством сдвигом фазы может быть причиной ощутимого гула.

■ Шум

Над графиками характеристик приведены суммарный уровень и спектр

- Звуковой мощности излучения через корпус.
- Звуковой мощности на впуске/выпуске в дБ (A). В таблице типов (см. левую страницу) дополнительно приведены:
- Излучение шума и шум по воздуху на впуске/выпуске как звуковое давление на расстоянии 1 м (свободное звуковое поле).

При сравнении с данными звукового давления на расстоянии 3 м, необходимо уменьшить приводимое значение на 8 дБ(A).

Комплектующие Стр.

Фильтры, калориферы, шумоглушители 299 Системы регулирования температуры калориферов 305, 309 Гибкие воздуховоды, вентиляционные решетки, фасонные элементы, Проходы сквозь крышу 345 Тарельчатые клапаны 364 Регуляторы скорости вращения, переключатели 381

■ Комплектующие к MV и MVZ

Гибкая соединительная манжета Тип FM 160 № 1684

В комплект входит 2 хомута. Для монтажа между вентилятором и системой воздуховодов, препятствует передаче вибраций и компенсирует допуски при монтаже. Для установки на впуске и выпуске необходимо 2 штуки.

Внешний обратный клапан Тип VK 160 № 0892

Клапан с возвратной пружиной, устанавливаемый на выпускной патрубок. Изготавливается из пластика белого цвета.

Внешняя защитная решетка Тип G 160 № 0893

Для установки в круглые вентиляционные выходы. Изготавливается из ударопрочного пластика белого цвета.

Защитная решетка

Тип MVS 160 № 6074

Предназначена для монтажа на впускном и выпускном патрубке вентилятора.

Гибкий шумоглушитель Тип FSD 160 № 0678

Алюминиевая труба с соединительными патрубками с обеих сторон. Шумоизолирующие пакеты толщиной 50 мм. Длина 1 м.

Фильтр-бокс

LFBR 160 G4 № 8578

Воздушный фильтр большой площади, монтаж в воздуховод.

Электрокалорифер

EHR-R 1,2/160 1,2 kBT № 9434

Трубчатый корпус, оцинкованная сталь.

Водяной калорифер

Тип WHR 160 № 9481

Монтаж в воздуховод.

■ Комплектующие ко всем типам

Обратный клапан

Тип RSKK 160 № 5669

С обратной пружиной, из металла. Установка в воздуховод.

Рабочий выключатель 0-1-2 Тип МVB № 6091

С функциями вкл./выкл., низкие и высокие обороты.

Трансформаторный регулятор скорости вращения

Тип TSW см. таблицу типов 5-ступенчатый, открытый монтаж.

Электронный регулятор скорости вращения Тип ESU/ESA см. таблицу типов

Открытый/скрытый монтаж.

Электронный выключатель с функцией задержки отключения

Тип ZNE № 0342 Плавно регулируемое время задержки отключения.

Разработаны специально для установки непосредственно в воздуховод. Могут использоваться в самых различных областях промышленности и жилом фонде.

Особенности

- Компактность и минимальные затраты на монтаж благодаря прямому прохождению потока.
- □ Не требует отводов.
- Соединительные патрубки соответствуют стандартным диаметрам воздуховодов.
- □ В серийной комплектации имеет 2 режима мощности; имеет регулируемую скорость вращения.
- □ Возможна установка в любом положении.
- ☐ Подшипники рассчитаны на 30 000 часов работы.
- □ Беспроблемное обслуживание и чистка без демонтажа системы воздуховодов благодаря извлекаемому вентиляторному блоку.
- □ Вентиляторный блок может поворачиваться в любом направлении.
- Интегрированный монтажный кронштейн упрощает установку на потолок и стены.

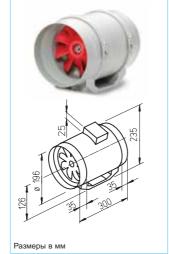
■ Общие характеристики□ Корпус

Вентиляторный блок легко извлекается из корпуса после расцепления зажимного хомута. Все детали из устойчивого к коррозии ударопрочного пластика. Цвет: светло-серый.

□ Регулирование мощности

Серийно с двумя ступенями мощности при помощи внешнего выключателя MVB (комплектующие). Кроме того плавно при помощи электронного регулятора или пятиступенчатого трансформатора.

□ Двигатель


Закрытый укомплектованный подшипниками двигатель, имеющий защиту от проникновения влаги, класс изоляции F, для длительной работы, не требует обслуживания и не генерирует радиопомех.

□ Защита двигателя

Встроенный в обмотку двигателя предохранитель, препятствующий перегреву устройства.

MV – одноступенчатый

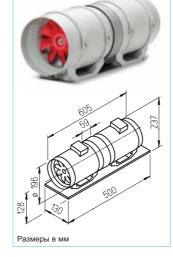
Откидной трубный вентилятор, монтируемый непосредственно в воздуховод.

■ Описание MV

Крыльчатка

Оптимизирована для обеспечения высоких показателей давления и расхода, изготовлена из высококачественного пластика.

□ Электрическое подключение


Просторная клеммная коробка (IP 44) расположенная снаружи на корпусе; может поворачиваться в любом направлении.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помешения.

MVZ – двухступенчатый

Для достижения высоких показателей давления: два вентилятора установлены один за другим.

■ Описание MVZ

Два расположенных один за другим вентилятора МV, соединенных при помощи муфты и смонтированных на одной монтажной плите. При последовательной работе рабочее давление увеличивается практически вдвое. Поставляется в виде готового к монтажу комплекта.

□ Крыльчатка

См. описание слева.

□ Электрическое подключение

Каждый вентилятор снабжен отдельной клеммной коробкой снаружи на корпусе. При управлении работой двух вентиляторов на 2 ступени мощности при помощи <u>одного</u> рабочего переключателя МVВ (комплектующие) или <u>одного</u> перекидного выключателя требуется соответствующая схема подключения соединительных реле. При использовании регулятора скорости вращения подключение осуществляется к большей ступени мощности.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

MVP – параллельный

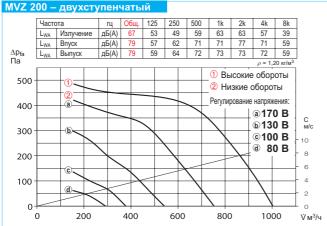
Для достижения высокого объемного расхода. Компактное параллельное исполнение.

■ Описание MVP

Два расположенных параллельно вентилятора MV, соединенных на впуске и выпуске прямоугольной платой для подключения к каналу и прикрученных к монтажной шине. Поставляется в виде готового к монтажу комплекта. При параллельной работе (совместное управление) расход воздуха увеличивается вдвое.

□ Крыльчатка

См. описание слева.


□ Электрическое подключение

Тип	Nº	Диаметр подключения	Расход, мин./ макс.	Скорость вращения мин./макс.	Уровень и Излучение через корпус		Потребл. мощность мин./макс.	Потребл. тока мин./макс.	Подключение согласно схеме	Макс. темп. рабочей среды	Bec	Трансформато 5-ступенчатый ре скорости врац	гулятор	Электронный* бесступенчатый регулятор скрытый/открытый монтаж
		MM	V м³/ч	об/мин	дБ(А)	дБ(А)	Вт	Α	Nº	+ °C	КГ	Тип	Nº	Tuπ №
Одноступен	чатый тру	бный венти	лятор, 230 Е	3, 50 гц, конд	ценсаторны	й двигатель	, IP 44							
MV 200	6055	200	750/1000	1900/2390	48/53	64/69	98/145	0,43/0,64	844.1	60	3,7	TSW 1,5	1495	ESU 1/ESA 1 0236/0238
Двухступен	чатый вен	тиляторный	блок, 230 Е	3, 50 гц, конд	енсаторныі	й двигатель	, IP 44							
MVZ 200	6062	200	750/1000	1900/2390	54/59	66/71	196/290	0,86/1,28	845.1	60	8,5	TSW 1,5	1495	ESU 3/ESA 3 0237/0239
Спаренный	вентилято	рный блок,	230 В, 50 гц	, конденсато	орный двига	атель, ІР 44								
MVP 200	6069	-	1500/2000	1900/2390	51/56	67/72	196/290	0,86/1,28	845.1	60	11,2	TSW 1,5	1495	ESU 3/ESA 3 0237/0239

^{*} Для минимизации уровня шума рекомендуется использовать трансформаторные регуляторы. Электронное управление посредством сдвигом фазы может быть причиной ощутимого гула.

MVP 2	00 –	паралл	ельн	ый								
	Часто	та	гц	Общ.	125	250	500	1k	2k	4k	8k]
	L _{WA}	Излучение	дБ(А)	64	50	46	57	61	58	55	40]
	L _{WA}	Впуск	дБ(А)	80	53	61	70	71	78	69	60]
Δp_{fa}	L _{WA}	Выпуск	дБ(А)	79	56	63	71	72	75	70	59	
Па										ρ = 1,2	0 кг/м ³	1
250 -								① Bե	ІСОКИЄ	обор (ОТЫ	1
250		(1)						2 H	ізкие (оборот	ТЫ	1
200-		(2) (a)			\uparrow	$\overline{}$		Регули	рование	напряж	ения:	
			\rightarrow				_			@17(0 B	
150-		(b)		\Box	\searrow				\rightarrow	6 130	-	C M/c
					Δ					©100	-	- 10
100 -			\downarrow			\setminus			λ	@ 80	0 B	- 8
						$ \lambda$						- 6
50-		© \		\rightarrow		1	\setminus			\setminus		- 4
50		0	\times		\setminus		_	$\downarrow \downarrow$		\rightarrow		- 2
0-	_				-					_/		L。
()	400		800		120	0	160	00	200	00	[∨] м³/ч

■ Ш∨м

Над графиками характеристик приведены суммарный уровень и спектр

- Звуковой мощности излучения через корпус.
- В заблице типов (см. левую страницу) дополнительно приведены:
- Излучение шума и шум по воздуху на впуске/выпуске как звуковое давление на расстоянии 1 м (свободное звуковое поле).

При сравнении с данными звукового давления на расстоянии 3 м, необходимо уменьшить приводимое значение на 8 дБ(A).

Комплектующие Стр.

Фильтры, калориферы, шумоглушители 299 Системы регулирования температуры калориферов 305, 309 Гибкие воздуховоды, вентиляционные решетки, фасонные элементы, Проходы сквозь крышу 345 Тарельчатые клапаны 364 Регуляторы скорости вращения, переключатели 381

■ Комплектующие к MV и MVZ

Гибкая соединительная манжета Тип FM 200 № 1670

В комплект входит 2 хомута. Для монтажа между вентилятором и системой воздуховодов, препятствует передаче вибраций и компенсирует допуски при монтаже. Для установки на впуске и выпуске необходимо 2 штуки.

Внешний обратный клапан Тип VK 200 № 0758

Клапан с возвратной пружиной, устанавливаемый на выпускной патрубок. Изготавливается из пластика светло-серого цвета.

Внешняя защитная решетка Тип G 200 № 0750

Для установки в круглые вентиляционные выходы. Изготавливается из ударопрочного пластика светлосерого цвета.

Защитная решетка

Тип MVS 200 № 6075 Предназначена для монтажа на

Предназначена для монтажа на впускном и выпускном патрубке вентилятора.

Гибкий шумоглушитель Тип FSD 200 № 0679

Алюминиевая труба с соединительными патрубками с обеих сторон. Шумоизолирующие пакеты толщиной 50 мм. Длина 1 м.

Фильтр-бокс LFBR 200 G4

LFBR 200 G4 № 8579 Воздушный фильтр большой площади, монтаж в воздуховод.

Электрокалорифер

EHR-R 1,2/200 1,2 kBT № 9436

Трубчатый корпус, оцинкованная сталь.

Водяной калорифер

Тип WHR 200 № 9482

Монтаж в воздуховод.

■ Комплектующие ко всем типам

Обратный клапан

Тип RSKK 200 № 5074

С обратной пружиной, из металла. Установка в воздуховод.

Рабочий выключатель 0-1-2 Тип МVB № 6091

С функциями вкл./выкл., низкие и высокие обороты.

Трансформаторный регулятор скорости вращения

Тип TSW см. таблицу типов 5-ступенчатый, открытый монтаж. Электронный регулятор скорости вращения

Тип ESU/ESA см. таблицу типов

Открытый/скрытый монтаж.
Электронный выключатель с функцией задержки отключения – для MV

Тип ZNE	№ 0342
– для MVZ и MVP	
Тип ZT	Nº 1277

Разработаны специально для установки непосредственно в воздуховод. Могут использоваться в самых различных областях промышленности и жилом фонде.

Особенности

- Компактность и минимальные затраты на монтаж благодаря прямому прохождению потока.
- ☐ Не требует отводов.☐ Соединительные патрубки соответ-
- ствуют стандартным диаметрам воздуховодов.

 В серийной комплектации имеет
- в серииной комплектации имеет
 режима мощности; имеет регулируемую скорость вращения.
- □ Возможна установка в любом положении.
- □ Подшипники рассчитаны на 30 000 часов работы.
- □ Беспроблемное обслуживание и чистка без демонтажа системы воздуховодов благодаря извлекаемому вентиляторному блоку.
- □ Вентиляторный блок может поворачиваться в любом направлении.
- Интегрированный монтажный кронштейн упрощает установку на потолок и стены.

■ Общие характеристики□ Корпус

Вентиляторный блок легко извлекается из корпуса после расцепления зажимного хомута. Все детали из устойчивого к коррозии ударопрочного пластика. Цвет: светло-серый.

□ Регулирование мощности

Серийно с двумя ступенями мощности при помощи внешнего выключателя МVВ (комплектующие). Кроме того плавно при помощи электронного регулятора или пятиступенчатого трансформатора.

□ Двигатель


Закрытый укомплектованный подшипниками двигатель, имеющий защиту от проникновения влаги, класс изоляции F, для длительной работы, не требует обслуживания и не генерирует радиопомех.

□ Защита двигателя

При помощи последовательно соединенного с обмоткой двигателя термоконтакта, срабатывающего при повышении температуры. После срабатывания и остывания двигателя происходит повторное включение.

MV – одноступенчатый

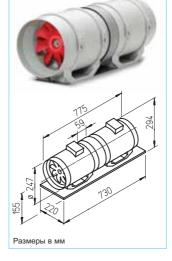
Откидной трубный вентилятор, монтируемый непосредственно в воздуховод.

■ Описание MV

Крыльчатка

Оптимизирована для обеспечения высоких показателей давления и расхода, изготовлена из высококачественного пластика.

□ Электрическое подключение


Просторная клеммная коробка (IP 44) расположенная снаружи на корпусе; может поворачиваться в любом направлении.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помешения.

MVZ – двухступенчатый

Для достижения высоких показателей давления: два вентилятора установлены один за другим.

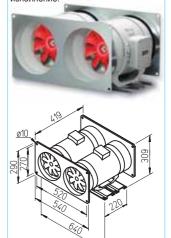
■ Описание MVZ

Два расположенных один за другим вентилятора МV, соединенных при помощи муфты и смонтированных на одной монтажной плите. При последовательной работе рабочее давление увеличивается практически вдвое. Поставляется в виде готового к монтажу комплекта.

□ Крыльчатка

См. описание слева.

□ Электрическое подключение


Каждый вентилятор снабжен отдельной клеммной коробкой снаружи на корпусе. При управлении работой двух вентиляторов на 2 ступени мощности при помощи <u>одного</u> рабочего переключателя МVВ (комплектующие) или <u>одного</u> перекидного выключателя требуется соответствующая схем подключения соединительных реле. При использовании регулятора скорости вращения подключение осуществляется к большей ступени мощности.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

MVP – параллельный

Для достижения высокого объемного расхода. Компактное параллельное исполнение.

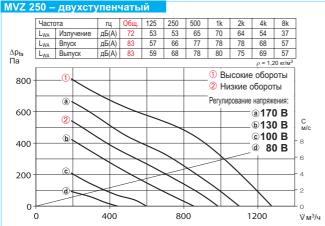
■ Описание MVP

Размеры в мм

Два расположенных параллельно вентилятора MV, соединенных на впуске и выпуске прямоугольной платой для подключения к каналу и прикрученных к монтажной шине. Поставляется в виде готового к монтажу комплекта. При параллельной работе (совместное управление) расход воздуха увеличивается вдвое.

Крыльчатка

См. описание слева.


□ Электрическое подключение

Тип	Nº	Диаметр подключения	Расход, мин./ макс.	Скорость вращения мин./макс.	Уровень ц Излучение через корпус	По воздуху	Потребл. мощность мин./макс.	Потребл. тока мин./макс.	Подключение согласно схеме	Макс. темп. рабочей среды	Bec	Трансформатор 5-ступенчатый регу скорости враще	пятор	Электронный* бесступенчатый регулятор скрытый/открытый монтаж
		MM	V м³/ч	об/мин	дБ(А)	дБ(А)	Вт	Α	Nº	+ °C	КГ	Тип	Nº	Тип №
Одноступен	чатый тру	бный венти	лятор, 230 Е	3, 50 гц, конд	денсаторныі	й двигатель	, IP 44							
MV 250	6056	250	980/1270	1950/2640	52/58	66/72	110/180	0,48/0,78	844.1	60	7,0	TSW 1,5	495	ESU 1/ESA 1 0236/0238
Двухступен	чатый вен	тиляторный	блок, 230 Е	3, 50 гц, конд	ценсаторный	й двигатель	, IP 44							
MVZ 250	6063	250	980/1270	1950/2640	58/64	69/75	220/360	0,96/1,56	845.1	60	17,6	TSW 3,0	496	ESU 3/ESA 3 0237/0239
Спаренный	вентилято	рный блок,	230 В, 50 гц	, конденсато	орный двига	атель, ІР 44								
MVP 250	6070	-	1860/2540	1950/2640	55/61	69/75	220/360	0,96/1,56	845.1	60	18,7	TSW 3,0	496	ESU 3/ESA 3 0237/0239

^{*} Для минимизации уровня шума рекомендуется использовать трансформаторные регуляторы. Электронное управление посредством сдвигом фазы может быть причиной ощутимого гула.

MVP 2	50 –	паралл	ельн	ый								
	Часто	ота	гц	Общ.	125	250	500	1k	2k	4k	8k	1
	L _{WA}	Излучение	дБ(А)	69	50	51	63	67	59	52	37	
	L _{WA}	Впуск	дБ(А)	83	54	66	76	77	80	66	57	
Δp_{fa}	L _{WA}	Выпуск	дБ(А)	83	56	68	77	79	77	67	57	
Па					_					ρ = 1,2	20 кг/м ³	,
400 -		1						① Вь	сокие	обор	ОТЫ	
400 -								2 Ни	зкие (оборо	ТЫ	
		a (Регулир	ование	напряж	ения:	
300 -				<u> </u>	\downarrow			_		a 17	0 B	
		2								ь 130	0 B	C M/c
		(b)		$\overline{}$			$\overline{}$			©10		- 8
200 -				$\overline{}$	$\overline{}$		_	egthanking		@ 80	0 B	°
			$\overline{}$	\rightarrow	\downarrow			\rightarrow	$\overline{}$	_		-6
100 -		©		_	\rightarrow		\leq		$\overline{}$			- 4
100					$ \leftarrow $		\ \		\			
			$\overline{}$	_								- 2
0-		-	\rightarrow	_	_		_	_	_	+		Lo
(0		800			16	00		2	400		У м³/ч

Шум

Над графиками характеристик приведены суммарный уровень и спектр

- Звуковой мощности излучения через корпус.
- Звуковой мощности на впуске/выпуске в дБ (А). В таблице типов (см. левую страницу) дополнительно приведены:
- Излучение шума и шум по воздуху на впуске/выпуске как звуковое давление на расстоянии 1 м (свободное звуковое поле).

При сравнении с данными звукового давления на расстоянии 3 м, необходимо уменьшить приводимое значение на 8 дБ(А).

Комплектующие Стр.

Фильтры, калориферы, 299 шумоглушители Системы регулирования температуры калориферов 305, 309 Гибкие воздуховоды, вентиляционные решетки, фасонные элементы, 345 Проходы сквозь крышу 364 Тарельчатые клапаны Регуляторы скорости 381 вращения, переключатели

■ Комплектующие к MV и MVZ

Гибкая соединительная манжета Тип FM 250

В комплект входит 2 хомута. Для монтажа между вентилятором и системой воздуховодов, препятствует передаче вибраций и компенсирует допуски при монтаже. Для установки на впуске и выпуске необходимо 2 штуки.

Внешний обратный клапан № 0759 Тип VK 250

Клапан с возвратной пружиной, устанавливаемый на выпускной патрубок. Изготавливается из пластика светло-серого цвета.

Внешняя защитная решетка Тип G 250 № 0751

Для установки в круглые вентиляционные выходы. Изготавливается из ударопрочного пластика светлосерого цвета.

Защитная решетка

Тип MVS 250 № 6076

Предназначена для монтажа на впускном и выпускном патрубке вентилятора.

Гибкий шумоглушитель Тип FSD 250 № 0680

Алюминиевая труба с соединительными патрубками с обеих сторон. Шумоизолирующие пакеты толщиной 50 мм. Длина 1 м.

Фильтр-бокс

LFBR 250 G4 Nº 8580

Воздушный фильтр большой площади, монтаж в воздуховод.

Электрокалорифер

EHR-R 6/250 6,0 кВт № 8712

Трубчатый корпус, оцинкованная сталь.

Водяной калорифер

Тип WHR 250 № 9483

Монтаж в воздуховод.

Комплектующие ко всем типам

Обратный клапан

Тип RSKK 250 № 5673

С обратной пружиной, из металла. Установка в воздуховод.

Рабочий выключатель 0-1-2 Тип MVB № 6091

С функциями вкл./выкл., низкие и высокие обороты.

Трансформаторный регулятор скорости вращения

Тип TSW см. таблицу типов

5-ступенчатый, открытый монтаж.

Электронный регулятор скорости вращения

Тип ESU/ESA см. таблицу типов

Открытый/скрытый монтаж. Термоэлектрический выключатель

с функцией задержки отключения Тип ZT № 1277

Несколько вариантов времени задержки отключения.

Разработаны специально для установки непосредственно в воздуховод. Могут использоваться в самых различных областях промышленности и жилом фонде.

Особенности

- Компактность и минимальные затраты на монтаж благодаря прямому прохождению потока.
- ☐ Не требует отводов.☐ Соединительные датрубки соот.
- Соединительные патрубки соответствуют стандартным диаметрам воздуховодов.
- □ В серийной комплектации имеет 2 режима мощности; имеет регулируемую скорость вращения.
- Возможна установка в любом положении.
- ☐ Подшипники рассчитаны на 30 000 часов работы.
- □ Беспроблемное обслуживание и чистка без демонтажа системы воздуховодов благодаря извлекаемому вентиляторному блоку.
- □ Вентиляторный блок может поворачиваться в любом направлении.
- Интегрированный монтажный кронштейн упрощает установку на потолок и стены.

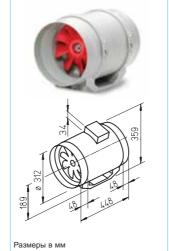
■ Общие характеристики□ Корпус

Вентиляторный блок легко извлекается из корпуса после расцепления зажимного хомута. Все детали из устойчивого к коррозии ударопрочного пластика. Цвет: светло-серый.

□ Регулирование мощности

Серийно с двумя ступенями мощности при помощи внешнего выключателя MVB (комплектующие). Кроме того плавно при помощи электронного регулятора или пятиступенчатого трансформатора.

□ Двигатель


Закрытый укомплектованный подшипниками двигатель, имеющий защиту от проникновения влаги, класс изоляции F, для длительной работы, не требует обслуживания и не генерирует радиопомех.

□ Защита двигателя

При помощи последовательно соединенного с обмоткой двигателя термоконтакта, срабатывающего при повышении температуры. После срабатывания и остывания двигателя происходит повторное включение.

MV – одноступенчатый

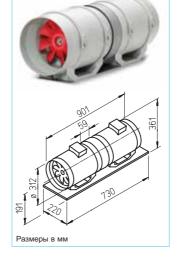
Откидной трубный вентилятор, монтируемый непосредственно в воздуховод.

■ Описание MV

□ Крыльчатка

Оптимизирована для обеспечения высоких показателей давления и расхода, изготовлена из высококачественного пластика.

□ Электрическое подключение


Просторная клеммная коробка (IP 44) расположенная снаружи на корпусе; может поворачиваться в любом направлении.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помешения.

MVZ – двухступенчатый

Для достижения высоких показателей давления: два вентилятора установлены один за другим.

Oписание MVZ

Два расположенных один за другим вентилятора МV, соединенных при помощи муфты и смонтированных на одной монтажной плите. При последное рабочее давление увеличивается практически вдвое. Поставляется в виде готового к монтажу комплекта.

□ Крыльчатка

См. описание слева.

□ Электрическое подключение

Каждый вентилятор снабжен отдельной клеммной коробкой снаружи на корпусе. При управлении работой двух вентиляторов на 2 ступени мощности при помощи <u>одного</u> рабочего переключателя МVВ (комплектующие) или <u>одного</u> перекидного выключателя требуется соответствующая схема подключения соединительных реле. При использовании регулятора скорости вращения подключение осуществляется к большей ступени мощности.

□ Монтаж

Для приточной и вытяжной вентиляции без ограничений в любом положении – горизонтально, вертикально, под наклоном. Для минимизации шума монтаж в систему воздуховодов должен осуществляться вдали от вентилируемого помещения.

Тип	Nº	Диаметр подключения	Расход, мин./ макс.	Скорость вращения мин./макс.	Уровень и Излучение через корпус		Потребл. мощность мин./макс.	Потребл. тока мин./макс.	Подключение согласно схеме	Макс. темп. рабочей среды	Bec	Трансформаторный 5-ступенчатый регулятор скорости вращения		Электронный* бесступенчатый регулятор скрытый/открытый монтаж	
		MM	V м³/ч	об/мин	дБ(А)	дБ(А)	Вт	Α	Nº	+ °C	ΚΓ	Тип	Nº	Тип	Nº
Одноступенчатый трубный вентилятор, 230 В, 50 гц, конденсаторный двигатель, ІР 44															
MV 315	6057	315	1580/2270	1820/2500	56/63	69/76	200/300	0,90/1,32	844.1	60	11,5	TSW 1,5	1495	ESU 3/ESA 3 0237	/0239
Двухступен	Двухступенчатый вентиляторный блок, 230 B, 50 гц, конденсаторный двигатель, IP 44														
MVZ 315	6064	315	1580/2270	1820/2500	60/68	72/79	400/600	1,80/2,64	845.1	60	26,8	TSW 3,0	1496	ESU 5/ESA 5 1296	/1299

^{*} Для минимизации уровня шума рекомендуется использовать трансформаторные регуляторы. Электронное управление посредством сдвигом фазы может быть причиной ощутимого гула.

MV 315 – одноступенчатый гц Общ. 125 250 L_{WA} Излучение дБ(А) 51 53 62 70 61 53 67 Впуск дБ(А) 68 80 81 дБ(А) 84 57 70 76 81 1 Высокие обороты 2 Низкие обороты 600 Регулирование напряжения: @170 B **6**130 B 400 (a) @100 B @ 80 B 8 6 200 4 2 500 1000 1500 2000 **У**м³/ч

■ Шум

Над графиками характеристик приведены суммарный уровень и спектр

- Звуковой мошности излучения через корпус.
- Звуковой мощности на впуске/выпуске в дБ (А). В таблице типов (см. левую страницу) дополнительно приведены:
- Излучение шума и шум по воздуху на впуске/выпуске как звуковое давление на расстоянии 1 м (свободное звуковое поле).

При сравнении с данными звукового давления на расстоянии 3 м, необходимо уменьшить приводимое значение на 8 дБ(А).

Комплектующие Стр.

Фильтры, калориферы, 299 шумоглушители Системы регулирования температуры калориферов 305, 309 Гибкие воздуховоды, вентипяционные решетки. фасонные элементы, Проходы сквозь крышу 345 Тарельчатые клапаны 364 Регуляторы скорости 381 вращения, переключатели

■ Комплектующие ко всем типам

Гибкая соединительная манжета Тип FM 315

В комплект входит 2 хомута. Для монтажа между вентилятором и системой воздуховодов, препятствует передаче вибраций и компенсирует допуски при монтаже. Для установки на впуске и выпуске необходимо 2 штуки.

Внешний обратный клапан № 0760 Тип VK 315

Клапан с возвратной пружиной, устанавливаемый на выпускной патрубок. Изготавливается из пластика светло-серого цвета.

Внешняя защитная решетка № 0752 Тип G 315

Для установки в круглые вентиляционные выходы. Изготавливается из ударопрочного пластика светлосерого цвета.

Защитная решетка

Тип MVS 315 № 6077 Предназначена для монтажа на

впускном и выпускном патрубке вентилятора.

Гибкий шумоглушитель Тип FSD 315 № 0681

Алюминиевая труба с соединительными патрубками с обеих сторон. Шумоизолирующие пакеты толщиной 50 мм. Длина 1 м.

Фильтр-бокс

LFBR 315 G4 Nº 8581 Воздушный фильтр большой площади, монтаж в воздуховод.

Электрокалорифер

EHR-R 6/315 6,0 кВт № 8713 Трубчатый корпус, оцинкованная сталь.

Водяной калорифер Тип WHR 315 № 9484

Монтаж в воздуховод.

Обратный клапан

Тип RSKK 315 № 5674 С обратной пружиной, из метал-

ла. Установка в воздуховод.

Рабочий выключатель 0-1-2 Тип MVB № 6091

С функциями вкл./выкл., низкие и высокие обороты.

Трансформаторный регулятор скорости вращения

Тип TSW см. таблицу типов 5-ступенчатый, открытый монтаж.

Электронный регулятор скорости вращения Тип ESU/ESA см. таблицу типов

Открытый/скрытый монтаж.

Термоэлектрический выключатель с функцией задержки отключения Тип ZT № 1277

Несколько вариантов времени задержки отключения.

